h-net: hqc1479


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,5,2)
Vertex degrees{3,3,4,4}
2D vertex symbol {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7}
Delaney-Dress Symbol <1479.2:10:1 3 5 7 9 10,2 3 4 6 8 10,1 4 5 6 7 8 9 10:6 7,3 3 4 4>
Dual net hqc1267

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3656 Fmmm 69 orthorhombic {4,3,4,3} 12 (4,5)
Full image sqc3828 Fmmm 69 orthorhombic {3,3,4,4} 12 (4,5)
Full image sqc9876 P4/mmm 123 tetragonal {3,3,4,4} 24 (4,5)
Full image sqc9563 I4122 98 tetragonal {3,3,4,4} 24 (4,6)
Full image sqc9567 Fddd 70 orthorhombic {3,3,4,4} 24 (4,6)
Full image sqc9593 I4122 98 tetragonal {3,3,4,4} 24 (4,6)
Full image sqc9603 Fddd 70 orthorhombic {3,3,4,4} 24 (4,6)
Full image sqc9606 Fddd 70 orthorhombic {3,3,4,4} 24 (4,6)
Full image sqc9619 I4122 98 tetragonal {3,3,4,4} 24 (4,6)
Full image sqc9806 I4122 98 tetragonal {3,3,4,4} 24 (4,6)
Full image sqc9853 Fddd 70 orthorhombic {3,3,4,4} 24 (4,6)
Full image sqc9856 Fddd 70 orthorhombic {3,3,4,4} 24 (4,6)
Full image sqc9879 I4122 98 tetragonal {3,3,4,4} 24 (4,6)
Full image sqc452 Pmmm 47 orthorhombic {3,4,4,3} 6 (4,5)
Full image sqc3191 P4222 93 tetragonal {4,3,4,3} 12 (4,5)
Full image sqc3269 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3272 P4222 93 tetragonal {4,3,3,4} 12 (4,5)
Full image sqc3429 P4222 93 tetragonal {4,4,3,3} 12 (4,5)
Full image sqc3827 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc14601 P4222 93 tetragonal {3,4,3,4} 12 (4,5)
Full image sqc14602 P4222 93 tetragonal {4,3,4,3} 12 (4,5)
Full image sqc14620 Cmma 67 orthorhombic {3,3,4,4} 12 (4,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4530 *22222a (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} No s‑net Snet sqc9806 Snet sqc14602
Tiling details UQC4531 *22222a (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc9294 Snet sqc9563 Snet sqc3191
Tiling details UQC4532 *22222b (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc3656 Snet sqc9606 Snet sqc452
Tiling details UQC4533 *22222b (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc3088 Snet sqc9603 Snet sqc3269
Tiling details UQC4534 *22222b (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc3828 Snet sqc9853 Snet sqc452
Tiling details UQC4535 *22222b (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} No s‑net Snet sqc9567 Snet sqc14620
Tiling details UQC4536 *22222a (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} No s‑net Snet sqc9593 Snet sqc14601
Tiling details UQC4537 *22222b (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc452 Snet sqc9856 Snet sqc3827
Tiling details UQC4538 *22222a (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc9302 Snet sqc9619 Snet sqc3272
Tiling details UQC4539 *22222a (4,5,2) {3,3,4,4} {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} Snet sqc9876 Snet sqc9879 Snet sqc3429

Symmetry-lowered hyperbolic tilings