U-tiling: UQC4780
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1762 |
*22222 |
(4,6,2) |
{4,3,4,4} |
{3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc639
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4,4} |
6 |
(4,6) |
G
|
False
|
|
sqc10625
|
|
Fddd |
70 |
orthorhombic |
{4,3,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc4656
|
|
Cmma |
67 |
orthorhombic |
{4,4,3,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.4:176:45 3 5 28 8 10 33 56 14 16 39 19 21 44 67 25 27 30 32 78 36 38 41 43 47 49 72 52 54 77 58 60 83 63 65 88 69 71 74 76 80 82 85 87 122 91 93 138 96 98 143 111 102 104 149 107 109 154 113 115 160 118 120 165 124 126 171 129 131 176 166 135 137 140 142 155 146 148 151 153 157 159 162 164 168 170 173 175,2 47 6 7 9 11 13 58 17 18 20 22 24 69 28 29 31 33 35 80 39 40 42 44 46 50 51 53 55 57 61 62 64 66 68 72 73 75 77 79 83 84 86 88 90 124 94 95 97 99 101 113 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 168 138 139 141 143 145 157 149 150 152 154 156 160 161 163 165 167 171 172 174 176,12 4 5 17 51 52 97 98 110 15 16 62 63 119 120 132 34 26 27 39 73 74 141 142 154 37 38 84 85 163 164 176 56 48 49 61 130 131 121 59 60 108 109 99 78 70 71 83 174 175 165 81 82 152 153 143 111 92 93 116 128 129 122 103 104 127 117 118 114 115 125 126 155 136 137 160 172 173 166 147 148 171 161 162 158 159 169 170:3 8 3 8 3 3 8 8 3 8 3 8 8 8 3 3,4 3 4 4 3 4 4 4 3 4 4 3 4 4 4 4 4 3 4 3 4 3 4 3> {(2, 54): 't2^-1', (2, 126): 'tau1', (2, 172): 'tau3*t1*tau2^-1', (2, 173): 'tau3', (2, 174): 'tau3', (2, 40): 't1^-1', (2, 170): 't2*tau1*t3^-1', (2, 171): 'tau3*t1*tau2^-1', (2, 165): 't2*tau1*t3^-1', (0, 33): 't1^-1', (2, 160): 'tau3^-1*t1^-1*tau2', (2, 161): 'tau3^-1*t1^-1*tau2', (2, 162): 'tau3^-1', (2, 163): 'tau3^-1', (2, 28): 't1^-1', (2, 29): 't1^-1', (2, 159): 't2^-1*tau1^-1*t3', (2, 152): 'tau2^-1', (2, 154): 't2^-1*tau1^-1*t3', (2, 151): 'tau2^-1', (0, 22): 't1^-1', (2, 140): 'tau2', (2, 141): 'tau2', (0, 143): 'tau2^-1*t1*tau3', (2, 10): 't3', (2, 110): 'tau1^-1', (0, 131): 't2^-1', (0, 165): 'tau3*t1*tau2^-1', (1, 68): 't1', (2, 131): 't2^-1', (0, 120): 't2', (0, 126): 't2^-1', (2, 121): 'tau1', (0, 115): 't2', (2, 115): 'tau1^-1', (0, 104): 't3^-1', (0, 109): 't3^-1', (0, 98): 't3', (1, 35): 't1^-1', (2, 98): 't3', (1, 156): 'tau3^-1*t1^-1*tau2', (0, 93): 't3', (2, 39): 't1^-1', (1, 134): 'tau2*t1^-1*tau3^-1'}