U-tiling: UQC4829
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1772 |
*22222 |
(4,6,2) |
{4,3,4,4} |
{3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4526
|
|
Fmmm |
69 |
orthorhombic |
{4,4,3,4} |
12 |
(4,6) |
G
|
False
|
|
sqc10397
|
|
Fddd |
70 |
orthorhombic |
{4,3,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc658
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4,4} |
6 |
(4,6) |
Topological data
Vertex degrees | {4,3,4,4} |
2D vertex symbol | {3.8.8.3}{3.8.8}{8.8.8.8}{8.8.8.8} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<63.1:176:23 3 5 7 52 10 55 34 14 16 18 63 21 66 25 27 29 74 32 77 36 38 40 85 43 88 67 47 49 51 54 78 58 60 62 65 69 71 73 76 80 82 84 87 133 91 93 95 129 98 132 144 102 104 106 118 109 121 155 113 115 117 120 166 124 126 128 131 135 137 139 173 142 176 146 148 150 162 153 165 157 159 161 164 168 170 172 175,2 25 6 9 8 11 13 36 17 20 19 22 24 28 31 30 33 35 39 42 41 44 46 69 50 53 52 55 57 80 61 64 63 66 68 72 75 74 77 79 83 86 85 88 90 135 94 97 96 99 101 146 105 108 107 110 112 157 116 119 118 121 123 168 127 130 129 132 134 138 141 140 143 145 149 152 151 154 156 160 163 162 165 167 171 174 173 176,100 4 5 105 106 96 31 32 22 122 15 16 127 128 118 42 43 144 26 27 149 150 140 44 166 37 38 171 172 162 111 48 49 116 117 129 75 76 66 89 59 60 94 95 107 86 87 155 70 71 160 161 173 88 133 81 82 138 139 151 92 93 141 142 121 103 104 152 153 132 114 115 163 164 125 126 174 175 136 137 165 147 148 176 158 159 169 170:3 8 3 8 8 8 3 3 3 8 3 8 3 3 8 8,4 3 4 4 4 3 4 4 4 4 4 4 3 4 4 3 4 4 3 4 3 4 3 3> {(2, 60): 't3^-1', (2, 61): 't3^-1', (1, 123): 't2^-1', (1, 112): 't2', (2, 55): 't3^-1', (2, 49): 't2^-1', (2, 50): 't2^-1', (2, 172): 'tau3', (0, 43): 't1^-1', (0, 40): 't1^-1', (2, 175): 't2*tau1*t3^-1', (0, 175): 'tau3*t1*tau2^-1', (0, 172): 'tau3*t1*tau2^-1', (2, 164): 't2^-1*tau1^-1*t3', (0, 32): 't1^-1', (0, 161): 'tau3^-1*t1^-1*tau2', (1, 101): 't3^-1', (2, 161): 'tau3^-1', (2, 162): 't2^-1', (2, 163): 't2^-1', (1, 90): 't3', (2, 152): 't3', (0, 29): 't1^-1', (2, 150): 'tau2^-1', (2, 151): 't3', (2, 17): 't2', (2, 140): 't3^-1', (2, 141): 't3^-1', (0, 164): 'tau3^-1*t1^-1*tau2', (2, 139): 'tau2', (2, 5): 't3', (2, 6): 't3', (2, 0): 't3', (2, 129): 't2^-1', (2, 130): 't2^-1', (2, 131): 'tau1', (2, 126): 't2^-1', (0, 121): 't2^-1', (2, 120): 'tau1^-1', (2, 11): 't2', (0, 110): 't2', (0, 99): 't3^-1', (2, 44): 't2^-1', (0, 88): 't3'}