U-tiling: UQC4905
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1787 |
*22222 |
(4,6,2) |
{4,4,4,3} |
{7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4470
|
|
Fmmm |
69 |
orthorhombic |
{3,4,4,4} |
12 |
(4,6) |
G
|
False
|
|
sqc10367
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,3} |
24 |
(4,7) |
D
|
False
|
|
sqc629
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
6 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,3} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<66.4:176:45 3 5 7 9 98 99 56 14 16 18 20 120 121 67 25 27 29 31 142 143 78 36 38 40 42 164 165 47 49 51 53 131 132 58 60 62 64 109 110 69 71 73 75 175 176 80 82 84 86 153 154 122 91 93 95 97 111 102 104 106 108 113 115 117 119 124 126 128 130 166 135 137 139 141 155 146 148 150 152 157 159 161 163 168 170 172 174,2 4 6 51 10 11 13 15 17 62 21 22 24 26 28 73 32 33 35 37 39 84 43 44 46 48 50 54 55 57 59 61 65 66 68 70 72 76 77 79 81 83 87 88 90 92 94 128 98 99 101 103 105 117 109 110 112 114 116 120 121 123 125 127 131 132 134 136 138 172 142 143 145 147 149 161 153 154 156 158 160 164 165 167 169 171 175 176,12 24 25 103 104 8 9 109 55 35 36 125 126 19 20 131 66 34 147 148 30 31 153 77 169 170 41 42 175 88 56 68 69 114 115 52 53 120 79 80 92 93 63 64 98 78 158 159 74 75 164 136 137 85 86 142 111 134 135 96 97 132 122 145 146 107 108 121 156 157 118 119 167 168 129 130 155 140 141 176 166 151 152 165 162 163 173 174:7 4 7 4 7 4 7 4 4 4 4 4 7 7 7 7,4 4 4 3 4 4 3 4 3 4 3 4 4 4 4 4 4 4 4 3 4 3 3 3> {(2, 58): 't3^-1', (2, 59): 't3^-1', (2, 53): 't2^-1', (2, 48): 't2^-1', (0, 42): 'tau3', (0, 43): 'tau3', (2, 175): 'tau3*t1*tau2^-1', (2, 43): 't1^-1', (2, 164): 'tau3^-1*t1^-1*tau2', (2, 165): 't2*tau1*t3^-1', (0, 32): 'tau2^-1', (2, 167): 't2', (2, 32): 't1^-1', (2, 166): 't2', (0, 165): 'tau3*t1*tau2^-1', (2, 156): 't2^-1', (0, 33): 't1^-1', (0, 31): 'tau2^-1', (2, 154): 't2^-1*tau1^-1*t3', (2, 155): 't2^-1', (1, 83): 't1', (0, 22): 't1^-1', (2, 145): 't3', (1, 72): 't1', (2, 14): 't2', (2, 15): 't2', (2, 9): 't3', (2, 4): 't3', (2, 133): 't3^-1', (2, 134): 't3^-1', (2, 130): 't2^-1', (2, 3): 't3', (0, 154): 'tau3^-1*t1^-1*tau2', (2, 121): 'tau1', (1, 149): 'tau2^-1*t1*tau3', (1, 171): 'tau3*t1*tau2^-1', (2, 100): 't3^-1', (2, 97): 't3', (2, 88): 'tau1', (0, 86): 'tau2', (0, 87): 'tau2', (0, 75): 'tau3^-1', (2, 47): 't2^-1', (0, 76): 'tau3^-1'}