h-net: hqc1787


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,6,2)
Vertex degrees{4,4,4,3}
2D vertex symbol {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}
Delaney-Dress Symbol <1787.2:11:1 3 5 7 9 10 11,2 4 6 7 10 11,1 2 3 4 5 8 9 10 11:7 4,4 4 4 3>
Dual net hqc1667

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4470 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4652 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc10669 P4/mmm 123 tetragonal {4,4,4,3} 24 (4,6)
Full image sqc10326 I4122 98 tetragonal {4,4,4,3} 24 (4,7)
Full image sqc10327 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10355 I4122 98 tetragonal {4,4,4,3} 24 (4,7)
Full image sqc10364 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10367 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10386 I4122 98 tetragonal {4,4,4,3} 24 (4,7)
Full image sqc10577 I4122 98 tetragonal {4,4,4,3} 24 (4,7)
Full image sqc10623 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10624 Fddd 70 orthorhombic {4,4,4,3} 24 (4,7)
Full image sqc10639 I4122 98 tetragonal {4,4,4,3} 24 (4,7)
Full image sqc629 Pmmm 47 orthorhombic {4,4,3,4} 6 (4,6)
Full image sqc4093 P4222 93 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4184 P4222 93 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4294 P4222 93 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc4651 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4715 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc14609 P4222 93 tetragonal {3,4,4,4} 12 (4,6)
Full image sqc14610 P4222 93 tetragonal {4,4,3,4} 12 (4,6)
Full image sqc14623 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4901 *22222a (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} No s‑net Snet sqc10577 Snet sqc14610
Tiling details UQC4902 *22222a (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc10080 Snet sqc10326 Snet sqc4093
Tiling details UQC4903 *22222b (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} No s‑net Snet sqc10327 Snet sqc14623
Tiling details UQC4904 *22222a (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc10669 Snet sqc10639 Snet sqc4294
Tiling details UQC4905 *22222b (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc4470 Snet sqc10367 Snet sqc629
Tiling details UQC4906 *22222a (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc10076 Snet sqc10386 Snet sqc4184
Tiling details UQC4907 *22222b (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc4652 Snet sqc10624 Snet sqc629
Tiling details UQC4908 *22222b (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc629 Snet sqc10623 Snet sqc4651
Tiling details UQC4909 *22222b (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} Snet sqc3998 Snet sqc10364 Snet sqc4715
Tiling details UQC4910 *22222a (4,6,2) {4,4,4,3} {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} No s‑net Snet sqc10355 Snet sqc14609

Symmetry-lowered hyperbolic tilings