U-tiling: UQC4908
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1787 |
*22222 |
(4,6,2) |
{4,4,4,3} |
{7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc629
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
6 |
(4,6) |
G
|
False
|
|
sqc10623
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,3} |
24 |
(4,7) |
D
|
False
|
|
sqc4651
|
|
Cmma |
67 |
orthorhombic |
{3,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,3} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<66.1:176:23 3 5 7 9 21 22 34 14 16 18 20 25 27 29 31 43 44 36 38 40 42 67 47 49 51 53 65 66 78 58 60 62 64 69 71 73 75 87 88 80 82 84 86 133 91 93 95 97 120 121 144 102 104 106 108 131 132 155 113 115 117 119 166 124 126 128 130 135 137 139 141 164 165 146 148 150 152 175 176 157 159 161 163 168 170 172 174,2 4 6 29 10 11 13 15 17 40 21 22 24 26 28 32 33 35 37 39 43 44 46 48 50 73 54 55 57 59 61 84 65 66 68 70 72 76 77 79 81 83 87 88 90 92 94 139 98 99 101 103 105 150 109 110 112 114 116 161 120 121 123 125 127 172 131 132 134 136 138 142 143 145 147 149 153 154 156 158 160 164 165 167 169 171 175 176,100 90 91 48 49 8 9 54 33 122 112 113 59 60 19 20 65 44 144 134 135 70 71 30 31 76 166 156 157 81 82 41 42 87 111 123 124 52 53 77 89 101 102 63 64 88 155 167 168 74 75 133 145 146 85 86 125 126 96 97 131 143 114 115 107 108 120 154 118 119 165 129 130 176 169 170 140 141 175 158 159 151 152 164 162 163 173 174:7 4 7 4 7 4 7 4 7 4 7 4 7 7 4 4,4 4 4 3 4 4 4 3 4 4 4 4 4 4 3 3 4 3 4 3 3 3 4 4> {(1, 127): 't2^-1', (2, 55): 't3^-1', (1, 116): 't2', (1, 105): 't3^-1', (2, 36): 't1^-1', (2, 174): 'tau3*t1*tau2^-1', (2, 175): 't2', (2, 168): 'tau3*t1*tau2^-1', (2, 169): 'tau3*t1*tau2^-1', (2, 42): 't1^-1', (2, 164): 't2^-1', (2, 166): 'tau3', (2, 167): 'tau3', (2, 163): 'tau3^-1*t1^-1*tau2', (2, 156): 'tau3^-1', (2, 157): 'tau3^-1*t1^-1*tau2', (2, 158): 'tau3^-1*t1^-1*tau2', (2, 31): 't1^-1', (2, 153): 't3', (2, 26): 't1^-1', (2, 155): 'tau3^-1', (2, 144): 'tau2^-1', (2, 145): 'tau2^-1', (2, 142): 't3^-1', (0, 142): 't3^-1*tau1*t2', (0, 141): 't3^-1*tau1*t2', (2, 133): 'tau2', (2, 134): 'tau2', (2, 0): 't3', (0, 120): 'tau1^-1', (0, 121): 't2^-1', (2, 11): 't2', (0, 119): 'tau1^-1', (0, 110): 't2', (0, 108): 'tau1^-1', (0, 109): 'tau1^-1', (0, 99): 't3^-1', (2, 25): 't1^-1', (2, 44): 't2^-1', (0, 88): 't3', (1, 94): 't3', (2, 81): 't1', (0, 174): 't2*tau1*t3^-1', (0, 175): 't2*tau1*t3^-1'}