U-tiling: UQC4998
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1829 |
*22222 |
(4,5,2) |
{8,3,4,4} |
{6.4.4.6.6.4.4.6}{6.4.4}{4.4.4.4... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc594
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4,8} |
5 |
(4,5) |
G
|
False
|
|
sqc10461
|
|
Fddd |
70 |
orthorhombic |
{8,3,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc4597
|
|
Cmma |
67 |
orthorhombic |
{4,3,4,8} |
10 |
(4,5) |
Topological data
Vertex degrees | {8,3,4,4} |
2D vertex symbol | {6.4.4.6.6.4.4.6}{6.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<7.1:176:23 3 5 7 9 11 34 14 16 18 20 22 25 27 29 31 33 36 38 40 42 44 67 47 49 51 53 55 78 58 60 62 64 66 69 71 73 75 77 80 82 84 86 88 133 91 93 95 97 99 144 102 104 106 108 110 155 113 115 117 119 121 166 124 126 128 130 132 135 137 139 141 143 146 148 150 152 154 157 159 161 163 165 168 170 172 174 176,2 14 6 11 8 10 13 17 22 19 21 24 36 28 33 30 32 35 39 44 41 43 46 58 50 55 52 54 57 61 66 63 65 68 80 72 77 74 76 79 83 88 85 87 90 113 94 99 96 98 101 124 105 110 107 109 112 116 121 118 120 123 127 132 129 131 134 157 138 143 140 142 145 168 149 154 151 153 156 160 165 162 164 167 171 176 173 175,100 4 5 94 95 52 53 21 22 122 15 16 116 117 63 64 144 26 27 138 139 74 75 43 44 166 37 38 160 161 85 86 111 48 49 127 128 65 66 89 59 60 105 106 155 70 71 171 172 87 88 133 81 82 149 150 92 93 129 130 120 121 103 104 118 119 131 132 114 115 125 126 136 137 173 174 164 165 147 148 162 163 175 176 158 159 169 170:6 4 4 4 4 6 4 4 4 4 6 4 6 4 4 4 4 4 4 4,8 3 4 4 8 4 8 3 4 4 8 4 3 3 3 4 3 3 4 3> {(1, 123): 'tau1', (1, 112): 'tau1^-1', (2, 55): 't3^-1', (2, 44): 't2^-1', (2, 173): 'tau3*t1*tau2^-1', (2, 174): 't2*tau1*t3^-1', (2, 175): 't2*tau1*t3^-1', (2, 40): 't1^-1', (2, 41): 't1^-1', (2, 170): 'tau3', (2, 171): 'tau3', (2, 164): 't2^-1*tau1^-1*t3', (2, 38): 'tau3', (2, 39): 'tau3', (2, 161): 'tau3^-1*t1^-1*tau2', (2, 162): 'tau3^-1*t1^-1*tau2', (2, 163): 't2^-1*tau1^-1*t3', (2, 28): 'tau2^-1', (2, 29): 't1^-1', (2, 30): 't1^-1', (2, 27): 'tau2^-1', (2, 148): 'tau2^-1', (2, 11): 't2', (0, 165): 't2', (2, 0): 't3', (0, 132): 't3^-1', (2, 131): 'tau1', (0, 154): 't2^-1', (2, 120): 'tau1^-1', (2, 139): 'tau2*t1^-1*tau3^-1', (0, 99): 't3^-1', (2, 97): 'tau1', (1, 167): 't2*tau1*t3^-1', (1, 156): 't2^-1*tau1^-1*t3', (2, 83): 'tau2', (2, 130): 'tau1'}