U-tiling: UQC5152
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2037 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5252
|
|
Fmmm |
69 |
orthorhombic |
{4,4,8,4} |
10 |
(4,6) |
G
|
False
|
|
sqc10851
|
|
Fddd |
70 |
orthorhombic |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc927
|
|
Pmmm |
47 |
orthorhombic |
{4,4,8,4} |
5 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.4:192:49 3 5 7 9 11 60 61 15 17 19 21 23 72 73 27 29 31 33 35 84 85 39 41 43 45 47 96 51 53 55 57 59 63 65 67 69 71 75 77 79 81 83 87 89 91 93 95 133 99 101 103 105 107 144 121 111 113 115 117 119 132 123 125 127 129 131 135 137 139 141 143 181 147 149 151 153 155 192 169 159 161 163 165 167 180 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,13 26 27 6 7 116 117 106 107 108 38 39 18 19 140 141 130 131 132 37 30 31 164 165 154 155 156 42 43 188 189 178 179 180 61 74 75 54 55 128 129 142 143 144 86 87 66 67 104 105 118 119 120 85 78 79 176 177 190 191 192 90 91 152 153 166 167 168 121 146 147 102 103 133 158 159 114 115 170 171 126 127 182 183 138 139 169 150 151 181 162 163 174 175 186 187:6 3 6 3 6 3 6 3 3 3 3 3 6 3 6 3 3 3 6 3 6 3 3 3,4 8 4 4 8 4 4 4 4 4 4 4 8 4 8 4 4 4 4 4> {(2, 189): 'tau3', (2, 190): 'tau3', (2, 191): 'tau3', (2, 56): 't2^-1', (0, 191): 'tau3*t1*tau2^-1', (2, 180): 't2*tau1*t3^-1', (2, 181): 't2', (2, 182): 't2', (2, 55): 't2^-1', (2, 177): 'tau3^-1', (2, 178): 'tau3^-1', (2, 179): 'tau3^-1', (2, 168): 't2^-1*tau1^-1*t3', (0, 47): 't1^-1', (2, 170): 't2^-1', (2, 165): 'tau2^-1', (0, 35): 't1^-1', (2, 166): 'tau2^-1', (2, 167): 'tau2^-1', (2, 33): 'tau2^-1', (0, 36): 't1^-1', (2, 35): 'tau2^-1', (2, 157): 't3', (0, 24): 't1^-1', (0, 156): 'tau2^-1*t1*tau3', (2, 20): 't2', (0, 144): 'tau2*t1^-1*tau3^-1', (2, 145): 't3^-1', (2, 146): 't3^-1', (2, 19): 't2', (2, 8): 't3', (2, 34): 'tau2^-1', (2, 132): 'tau1', (2, 7): 't3', (2, 120): 'tau1^-1', (2, 121): 't2', (2, 158): 't3', (2, 104): 't3', (0, 167): 'tau2^-1*t1*tau3', (2, 67): 't3^-1'}