U-tiling: UQC5153
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2037 |
*22222 |
(4,6,2) |
{4,8,4,4} |
{6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5403
|
|
Fmmm |
69 |
orthorhombic |
{4,8,4,4} |
10 |
(4,6) |
G
|
False
|
|
sqc10985
|
|
Fddd |
70 |
orthorhombic |
{4,8,4,4} |
20 |
(4,7) |
D
|
False
|
|
sqc927
|
|
Pmmm |
47 |
orthorhombic |
{4,4,8,4} |
5 |
(4,6) |
Topological data
Vertex degrees | {4,8,4,4} |
2D vertex symbol | {6.6.6.6}{6.3.3.6.6.3.3.6}{6.6.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<12.3:192:97 3 5 7 9 11 108 121 15 17 19 21 23 132 145 27 29 31 33 35 156 169 39 41 43 45 47 180 133 51 53 55 57 59 144 109 63 65 67 69 71 120 181 75 77 79 81 83 192 157 87 89 91 93 95 168 99 101 103 105 107 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,49 14 15 6 7 32 33 118 119 120 61 18 19 44 45 142 143 144 73 38 39 30 31 166 167 168 85 42 43 190 191 192 62 63 54 55 80 81 130 131 132 66 67 92 93 106 107 108 86 87 78 79 178 179 180 90 91 154 155 156 133 122 123 102 103 152 153 121 134 135 114 115 164 165 126 127 176 177 138 139 188 189 181 170 171 150 151 169 182 183 162 163 174 175 186 187:6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3 3 3 3 3 3 3 3,4 8 4 4 4 4 4 4 4 8 4 4 4 4 4 4 4 8 8 4> {(2, 188): 't2', (2, 23): 't2', (2, 57): 't2^-1', (2, 58): 't2^-1', (2, 59): 't2^-1', (2, 180): 'tau3*t1*tau2^-1', (0, 179): 'tau3^-1', (2, 182): 't2*tau1*t3^-1', (2, 176): 't2^-1', (0, 180): 'tau3', (0, 191): 'tau3', (2, 164): 't3', (0, 168): 'tau3^-1', (2, 168): 'tau3^-1*t1^-1*tau2', (2, 170): 't2^-1*tau1^-1*t3', (2, 36): 't1^-1', (0, 35): 'tau2^-1', (0, 167): 'tau2^-1', (2, 163): 't3', (0, 24): 'tau2^-1', (2, 24): 't1^-1', (0, 156): 'tau2^-1', (2, 21): 't2', (2, 151): 't3^-1', (2, 145): 't3^-1*tau1*t2', (2, 139): 't2^-1', (2, 142): 't2^-1', (2, 9): 't3', (2, 10): 't3', (2, 181): 't2*tau1*t3^-1', (2, 133): 'tau1', (2, 134): 'tau1', (2, 127): 't2', (2, 121): 'tau1^-1', (2, 122): 'tau1^-1', (2, 119): 't3^-1', (2, 104): 't3', (2, 105): 't3', (2, 106): 't3', (2, 107): 't3'}