U-tiling: UQC5168
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2042 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{12.12.12.12}{12.3.3.12}{12.12.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc4731
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,3} |
12 |
(4,6) |
G
|
False
|
|
sqc10865
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc858
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
6 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.5:192:13 3 5 7 9 11 60 15 17 19 21 23 72 37 27 29 31 33 35 84 39 41 43 45 47 96 61 51 53 55 57 59 63 65 67 69 71 85 75 77 79 81 83 87 89 91 93 95 121 99 101 103 105 107 144 133 111 113 115 117 119 132 123 125 127 129 131 135 137 139 141 143 169 147 149 151 153 155 192 181 159 161 163 165 167 180 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,25 110 111 6 7 116 117 106 107 108 37 134 135 18 19 140 141 130 131 132 158 159 30 31 164 165 154 155 156 182 183 42 43 188 189 178 179 180 73 122 123 54 55 128 129 142 143 144 85 98 99 66 67 104 105 118 119 120 170 171 78 79 176 177 190 191 192 146 147 90 91 152 153 166 167 168 145 102 103 157 114 115 169 126 127 181 138 139 150 151 162 163 174 175 186 187:12 3 3 12 3 3 3 3 3 3 12 3 3 3 3 12 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 61): 't3^-1', (2, 62): 't3^-1', (2, 191): 'tau3', (2, 56): 't2^-1', (0, 191): 'tau3*t1*tau2^-1', (2, 189): 'tau3', (2, 180): 't2', (0, 179): 'tau3^-1*t1^-1*tau2', (2, 55): 't2^-1', (2, 49): 't2^-1', (2, 50): 't2^-1', (2, 179): 'tau3^-1', (2, 45): 'tau3', (2, 46): 'tau3', (2, 168): 't2^-1', (0, 47): 't1^-1', (2, 165): 'tau2^-1', (0, 35): 't1^-1', (2, 166): 'tau2^-1', (2, 167): 'tau2^-1', (2, 33): 'tau2^-1', (2, 34): 'tau2^-1', (2, 35): 'tau2^-1', (2, 156): 't3', (2, 20): 't2', (0, 144): 't3^-1*tau1*t2', (2, 144): 't3^-1', (2, 19): 't2', (2, 13): 't2', (2, 14): 't2', (2, 8): 't3', (2, 7): 't3', (2, 1): 't3', (2, 2): 't3', (2, 190): 'tau3', (2, 104): 't3', (0, 180): 't2*tau1*t3^-1', (0, 108): 'tau1^-1', (0, 96): 'tau1', (2, 103): 't3'}