U-tiling: UQC5172
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2042 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{12.12.12.12}{12.3.3.12}{12.12.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5299
|
|
Fmmm |
69 |
orthorhombic |
{4,4,4,4} |
12 |
(4,6) |
G
|
False
|
|
sqc10864
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc858
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
6 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.4:192:49 3 5 7 9 11 108 61 15 17 19 21 23 132 73 27 29 31 33 35 156 85 39 41 43 45 47 180 51 53 55 57 59 144 63 65 67 69 71 120 75 77 79 81 83 192 87 89 91 93 95 168 133 99 101 103 105 107 121 111 113 115 117 119 123 125 127 129 131 135 137 139 141 143 181 147 149 151 153 155 169 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,13 26 27 6 7 32 33 118 119 120 38 39 18 19 44 45 142 143 144 37 30 31 166 167 168 42 43 190 191 192 61 74 75 54 55 80 81 130 131 132 86 87 66 67 92 93 106 107 108 85 78 79 178 179 180 90 91 154 155 156 121 146 147 102 103 152 153 133 158 159 114 115 164 165 170 171 126 127 176 177 182 183 138 139 188 189 169 150 151 181 162 163 174 175 186 187:12 3 12 3 12 3 12 3 3 3 3 3 3 3 3 3 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 188): 't2', (2, 23): 't2', (2, 57): 't2^-1', (2, 58): 't2^-1', (2, 59): 't2^-1', (2, 180): 't2*tau1*t3^-1', (0, 179): 'tau3^-1', (2, 182): 't2', (2, 176): 't2^-1', (2, 11): 't3', (0, 180): 'tau3*t1*tau2^-1', (0, 191): 'tau3', (0, 168): 'tau3^-1*t1^-1*tau2', (2, 175): 't2^-1', (2, 168): 't2^-1*tau1^-1*t3', (2, 170): 't2^-1', (2, 164): 't3', (0, 35): 'tau2^-1', (0, 167): 'tau2^-1', (0, 36): 't1^-1', (2, 163): 't3', (2, 157): 't3', (0, 24): 't1^-1', (2, 21): 't2', (2, 22): 't2', (2, 151): 't3^-1', (2, 145): 't3^-1', (2, 146): 't3^-1', (2, 9): 't3', (2, 10): 't3', (2, 181): 't2', (2, 132): 'tau1', (2, 120): 'tau1^-1', (2, 121): 't2', (2, 139): 't2^-1', (2, 158): 't3', (2, 104): 't3', (2, 105): 't3', (2, 106): 't3', (2, 107): 't3'}