U-tiling: UQC5173
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2042 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{12.12.12.12}{12.3.3.12}{12.12.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc858
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
6 |
(4,6) |
G
|
False
|
|
sqc10860
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc5316
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.2:192:109 3 5 7 9 11 36 133 15 17 19 21 23 48 157 27 29 31 33 35 181 39 41 43 45 47 121 51 53 55 57 59 84 97 63 65 67 69 71 96 169 75 77 79 81 83 145 87 89 91 93 95 99 101 103 105 107 156 111 113 115 117 119 168 123 125 127 129 131 180 135 137 139 141 143 192 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,97 50 51 6 7 56 57 22 23 24 121 62 63 18 19 68 69 145 74 75 30 31 80 81 46 47 48 169 86 87 42 43 92 93 133 54 55 70 71 72 109 66 67 181 78 79 94 95 96 157 90 91 134 135 102 103 140 141 130 131 132 122 123 114 115 128 129 142 143 144 126 127 138 139 182 183 150 151 188 189 178 179 180 170 171 162 163 176 177 190 191 192 174 175 186 187:12 3 12 3 3 3 12 3 12 3 3 3 3 3 3 3 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 188): 'tau3*t1*tau2^-1', (2, 189): 't2*tau1*t3^-1', (2, 190): 't2*tau1*t3^-1', (2, 191): 't2*tau1*t3^-1', (0, 191): 't2', (0, 60): 't3^-1', (2, 187): 'tau3*t1*tau2^-1', (2, 180): 'tau3', (2, 181): 'tau3*t1*tau2^-1', (0, 48): 't2^-1', (2, 176): 'tau3^-1*t1^-1*tau2', (2, 177): 't2^-1*tau1^-1*t3', (2, 178): 't2^-1*tau1^-1*t3', (2, 179): 't2^-1*tau1^-1*t3', (2, 44): 't1^-1', (2, 175): 'tau3^-1*t1^-1*tau2', (2, 168): 'tau3^-1', (2, 169): 'tau3^-1*t1^-1*tau2', (2, 170): 'tau3^-1*t1^-1*tau2', (2, 43): 't1^-1', (2, 37): 't1^-1', (2, 38): 't1^-1', (2, 32): 't1^-1', (0, 167): 't3', (2, 156): 'tau2^-1', (0, 155): 't3^-1', (2, 31): 't1^-1', (2, 24): 'tau2^-1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 146): 'tau2*t1^-1*tau3^-1', (2, 141): 'tau1', (2, 142): 'tau1', (2, 143): 'tau1', (0, 12): 't2', (0, 179): 't2^-1', (0, 0): 't3', (2, 131): 'tau1^-1', (2, 105): 'tau1', (2, 106): 'tau1'}