U-tiling: UQC5174
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2042 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{12.12.12.12}{12.3.3.12}{12.12.3... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc858
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
6 |
(4,6) |
G
|
False
|
|
sqc11131
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
24 |
(4,7) |
D
|
False
|
|
sqc5495
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
12 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {12.12.12.12}{12.3.3.12}{12.12.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<13.1:192:25 3 5 7 9 11 24 37 15 17 19 21 23 27 29 31 33 35 48 39 41 43 45 47 73 51 53 55 57 59 72 85 63 65 67 69 71 75 77 79 81 83 96 87 89 91 93 95 145 99 101 103 105 107 132 157 111 113 115 117 119 144 169 123 125 127 129 131 181 135 137 139 141 143 147 149 151 153 155 180 159 161 163 165 167 192 171 173 175 177 179 183 185 187 189 191,2 4 12 8 11 10 14 16 24 20 23 22 26 28 36 32 35 34 38 40 48 44 47 46 50 52 60 56 59 58 62 64 72 68 71 70 74 76 84 80 83 82 86 88 96 92 95 94 98 100 108 104 107 106 110 112 120 116 119 118 122 124 132 128 131 130 134 136 144 140 143 142 146 148 156 152 155 154 158 160 168 164 167 166 170 172 180 176 179 178 182 184 192 188 191 190,109 98 99 6 7 104 105 58 59 60 133 122 123 18 19 128 129 70 71 72 157 146 147 30 31 152 153 82 83 84 181 170 171 42 43 176 177 94 95 96 121 134 135 54 55 140 141 97 110 111 66 67 116 117 169 182 183 78 79 188 189 145 158 159 90 91 164 165 102 103 142 143 144 114 115 130 131 132 126 127 138 139 150 151 190 191 192 162 163 178 179 180 174 175 186 187:12 3 3 3 3 12 3 3 3 3 12 3 12 3 3 3 3 3 3 3,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 60): 't3^-1', (2, 189): 'tau3*t1*tau2^-1', (2, 190): 'tau3*t1*tau2^-1', (2, 191): 'tau3*t1*tau2^-1', (0, 191): 't2*tau1*t3^-1', (2, 188): 'tau3', (0, 179): 't2^-1*tau1^-1*t3', (2, 182): 'tau3', (2, 176): 'tau3^-1', (2, 178): 'tau3^-1*t1^-1*tau2', (2, 179): 'tau3^-1*t1^-1*tau2', (2, 45): 't1^-1', (2, 46): 't1^-1', (2, 47): 't1^-1', (2, 169): 'tau3^-1', (2, 170): 'tau3^-1', (2, 43): 'tau3', (2, 164): 'tau2^-1', (2, 165): 'tau2^-1*t1*tau3', (2, 32): 'tau2^-1', (2, 33): 't1^-1', (2, 34): 't1^-1', (2, 35): 't1^-1', (2, 157): 'tau2^-1', (2, 31): 'tau2^-1', (2, 25): 'tau2^-1', (2, 26): 'tau2^-1', (0, 144): 't3^-1', (2, 12): 't2', (0, 143): 'tau1', (2, 181): 'tau3', (0, 131): 'tau1^-1', (2, 163): 'tau2^-1', (2, 0): 't3', (0, 132): 't2^-1', (0, 120): 't2', (2, 120): 't2', (0, 108): 't3^-1', (2, 86): 'tau2', (2, 79): 'tau3^-1'}