U-tiling: UQC5965
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2408 |
*22222 |
(6,7,2) |
{4,4,4,3,4,4} |
{7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7169
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4,4,4,4} |
16 |
(6,7) |
G
|
False
|
|
sqc12080
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,3,4,4} |
32 |
(6,8) |
D
|
False
|
|
sqc1495
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4,4,4,4} |
8 |
(6,7) |
Topological data
Vertex degrees | {4,4,4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<33.4:240:61 3 5 7 9 11 13 15 76 18 20 22 24 26 28 30 91 33 35 37 39 41 43 45 106 48 50 52 54 56 58 60 63 65 67 69 71 73 75 78 80 82 84 86 88 90 93 95 97 99 101 103 105 108 110 112 114 116 118 120 166 123 125 127 129 131 133 135 151 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 226 183 185 187 189 191 193 195 211 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 67 10 15 12 14 17 19 21 82 25 30 27 29 32 34 36 97 40 45 42 44 47 49 51 112 55 60 57 59 62 64 66 70 75 72 74 77 79 81 85 90 87 89 92 94 96 100 105 102 104 107 109 111 115 120 117 119 122 124 126 172 130 135 132 134 137 139 141 157 145 150 147 149 152 154 156 160 165 162 164 167 169 171 175 180 177 179 182 184 186 232 190 195 192 194 197 199 201 217 205 210 207 209 212 214 216 220 225 222 224 227 229 231 235 240 237 239,16 32 33 139 140 8 9 145 146 132 133 74 75 47 48 169 170 23 24 175 176 162 163 89 90 46 199 200 38 39 205 206 192 193 104 105 229 230 53 54 235 236 222 223 119 120 76 92 93 154 155 68 69 160 161 177 178 107 108 124 125 83 84 130 131 147 148 106 214 215 98 99 220 221 237 238 184 185 113 114 190 191 207 208 151 182 183 128 129 179 180 166 197 198 143 144 164 165 212 213 158 159 227 228 173 174 211 188 189 239 240 226 203 204 224 225 218 219 233 234:7 4 7 4 7 4 7 4 4 4 4 4 7 4 7 4 4 4 7 4 7 4 4 4,4 4 4 3 4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 4 4 3 4 3 3 3> {(2, 191): 'tau2', (2, 58): 't1^-1', (2, 59): 't1^-1', (2, 180): 't3^-1*tau1*t2', (2, 181): 't3^-1', (2, 182): 't3^-1', (2, 43): 't1^-1', (0, 180): 'tau2*t1^-1*tau3^-1', (2, 44): 't1^-1', (2, 174): 't2^-1', (2, 175): 't2^-1', (2, 168): 't2^-1', (2, 169): 't2^-1', (1, 111): 't1', (0, 45): 't1^-1', (2, 165): 'tau1', (2, 166): 't2^-1', (2, 167): 't2^-1', (2, 160): 't2', (1, 231): 'tau3*t1*tau2^-1', (1, 216): 'tau3^-1*t1^-1*tau2', (2, 159): 't2', (2, 152): 't2', (2, 153): 't2', (2, 154): 't2', (2, 150): 'tau1^-1', (2, 151): 't2', (2, 144): 't3^-1', (2, 145): 't3^-1', (1, 36): 't1^-1', (2, 136): 't3^-1', (2, 137): 't3^-1', (2, 138): 't3^-1', (2, 139): 't3^-1', (2, 129): 't3', (2, 130): 't3', (2, 124): 't3', (2, 123): 't3', (2, 236): 'tau3', (2, 237): 'tau3', (2, 238): 'tau3*t1*tau2^-1', (2, 224): 'tau3^-1*t1^-1*tau2', (2, 225): 't2*tau1*t3^-1', (0, 90): 't1', (2, 221): 'tau3^-1', (2, 222): 'tau3^-1', (2, 223): 'tau3^-1*t1^-1*tau2', (2, 206): 'tau2^-1', (2, 207): 'tau2^-1', (0, 195): 'tau2^-1*t1*tau3', (2, 192): 'tau2', (2, 194): 'tau2*t1^-1*tau3^-1'}