U-tiling: UQC5966
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2408 |
*22222 |
(6,7,2) |
{4,4,4,3,4,4} |
{7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc7341
|
|
Fmmm |
69 |
orthorhombic |
{3,4,4,4,4,4} |
16 |
(6,7) |
G
|
False
|
|
sqc12254
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,3,4,4} |
32 |
(6,8) |
D
|
False
|
|
sqc1495
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4,4,4,4} |
8 |
(6,7) |
Topological data
Vertex degrees | {4,4,4,3,4,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.4.7}{7.4.4}{4.4.4.4}{4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<33.3:240:121 3 5 7 9 11 13 15 151 18 20 22 24 26 28 30 181 33 35 37 39 41 43 45 211 48 50 52 54 56 58 60 166 63 65 67 69 71 73 75 136 78 80 82 84 86 88 90 226 93 95 97 99 101 103 105 196 108 110 112 114 116 118 120 123 125 127 129 131 133 135 138 140 142 144 146 148 150 153 155 157 159 161 163 165 168 170 172 174 176 178 180 183 185 187 189 191 193 195 198 200 202 204 206 208 210 213 215 217 219 221 223 225 228 230 232 234 236 238 240,2 4 6 127 10 15 12 14 17 19 21 157 25 30 27 29 32 34 36 187 40 45 42 44 47 49 51 217 55 60 57 59 62 64 66 172 70 75 72 74 77 79 81 142 85 90 87 89 92 94 96 232 100 105 102 104 107 109 111 202 115 120 117 119 122 124 126 130 135 132 134 137 139 141 145 150 147 149 152 154 156 160 165 162 164 167 169 171 175 180 177 179 182 184 186 190 195 192 194 197 199 201 205 210 207 209 212 214 216 220 225 222 224 227 229 231 235 240 237 239,61 17 18 34 35 8 9 40 41 147 148 134 135 76 49 50 23 24 55 56 177 178 164 165 91 47 48 38 39 207 208 194 195 106 53 54 237 238 224 225 77 78 94 95 68 69 100 101 162 163 179 180 109 110 83 84 115 116 132 133 149 150 107 108 98 99 222 223 239 240 113 114 192 193 209 210 166 152 153 184 185 128 129 190 191 151 167 168 199 200 143 144 205 206 214 215 158 159 220 221 229 230 173 174 235 236 226 212 213 188 189 211 227 228 203 204 218 219 233 234:7 4 7 4 7 4 7 4 7 4 7 4 7 4 7 4 4 4 4 4 4 4 4 4,4 4 4 3 4 4 4 3 4 4 4 3 4 3 4 4 4 3 4 4 3 4 3 3 4 4 4 4 4 4 4 4> {(2, 189): 't3^-1', (2, 190): 't3^-1', (2, 184): 't3^-1', (2, 180): 'tau2*t1^-1*tau3^-1', (2, 181): 't3^-1*tau1*t2', (2, 182): 't3^-1*tau1*t2', (2, 183): 't3^-1', (2, 176): 't2^-1', (2, 177): 't2^-1', (2, 45): 't1^-1', (2, 174): 't2^-1', (2, 175): 't2^-1', (2, 168): 't2^-1', (2, 169): 't2^-1', (1, 111): 'tau2', (0, 45): 'tau3', (1, 96): 'tau3^-1', (2, 166): 'tau1', (2, 167): 'tau1', (2, 160): 't2', (2, 161): 't2', (2, 162): 't2', (2, 30): 't1^-1', (2, 159): 't2', (0, 30): 'tau2^-1', (2, 153): 't2', (2, 154): 't2', (2, 151): 'tau1^-1', (2, 144): 't3^-1', (2, 145): 't3^-1', (2, 146): 't3^-1', (2, 147): 't3^-1', (2, 138): 't3^-1', (2, 139): 't3^-1', (2, 132): 't3', (2, 131): 't3', (1, 186): 'tau2', (2, 122): 'tau1', (1, 51): 'tau3', (2, 238): 'tau3', (0, 105): 'tau2', (2, 104): 'tau3^-1', (2, 224): 'tau3^-1', (2, 226): 't2*tau1*t3^-1', (2, 227): 't2*tau1*t3^-1', (0, 90): 'tau3^-1', (2, 223): 'tau3^-1', (2, 208): 'tau2^-1', (2, 209): 'tau2^-1', (2, 210): 'tau3^-1*t1^-1*tau2', (2, 193): 'tau2', (2, 194): 'tau2'}