h-net: hqc1055


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{6,3}
2D vertex symbol {4.8.3.3.8.4}{8.8.3}
Delaney-Dress Symbol <1055.2:9:1 2 3 5 7 8 9,2 4 9 8 7,1 3 6 7 8 9:4 8 3,6 3>
Dual net hqc1112

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2634 Fmmm 69 orthorhombic {6,3} 8 (2,5)
Full image sqc8912 P4/mmm 123 tetragonal {6,3} 16 (2,5)
Full image sqc8452 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8580 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8662 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8677 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8685 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8697 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8698 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8700 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8712 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc9033 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc274 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc319 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc2447 P4222 93 tetragonal {3,6} 8 (2,5)
Full image sqc2619 P42/mmc 131 tetragonal {6,3} 8 (2,5)
Full image sqc2635 Cmma 67 orthorhombic {3,6} 8 (2,5)
Full image sqc2677 P4222 93 tetragonal {3,6} 8 (2,5)
Full image sqc2888 Cmma 67 orthorhombic {3,6} 8 (2,5)
Full image sqc2976 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc2978 P4222 93 tetragonal {3,6} 8 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1257 *22222a (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} No s‑net Snet sqc8452 Snet sqc2447
Tiling details UQC1258 *22222b (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc2162 Snet sqc8700 Snet sqc319
Tiling details UQC1259 *22222a (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc8912 Snet sqc8662 Snet sqc2976
Tiling details UQC1260 *22222b (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc2634 Snet sqc8712 Snet sqc274
Tiling details UQC1261 *22222b (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} No s‑net Snet sqc8685 Snet sqc274
Tiling details UQC1262 *22222a (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} No s‑net Snet sqc9033 Snet sqc2978
Tiling details UQC1263 *22222b (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc274 Snet sqc8677 Snet sqc2888
Tiling details UQC1264 *22222b (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc274 Snet sqc8697 Snet sqc2635
Tiling details UQC1265 *22222a (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc7841 Snet sqc8580 Snet sqc2619
Tiling details UQC1266 *22222a (2,5,3) {6,3} {4.8.3.3.8.4}{8.8.3} Snet sqc2161 Snet sqc8698 Snet sqc2677

Symmetry-lowered hyperbolic tilings