| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,5,2) |
| Vertex degrees | {4,6,4} |
| 2D vertex symbol | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
| Delaney-Dress Symbol | <1102.2:9:1 3 5 6 8 9,2 3 6 7 9,1 4 5 6 7 8 9:3 6,4 6 4> |
| Dual net | hqc990 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc324 | Pmmm | 47 | orthorhombic | {4,4,6} | 4 | (3,5) | |
|
sqc2834 | Fmmm | 69 | orthorhombic | {6,4,4} | 8 | (3,5) | |
|
sqc2993 | Fmmm | 69 | orthorhombic | {4,4,6} | 8 | (3,5) | |
|
sqc9006 | P4/mmm | 123 | tetragonal | {4,6,4} | 16 | (3,5) | |
|
sqc8752 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | |
|
sqc8759 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | |
|
sqc8760 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | |
|
sqc8774 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | |
|
sqc8799 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | |
|
sqc8800 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | |
|
sqc8994 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | |
|
sqc9000 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | |
|
sqc9001 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | |
|
sqc9002 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | |
|
sqc2498 | P4222 | 93 | tetragonal | {6,4,4} | 8 | (3,5) | |
|
sqc2705 | P42/mmc | 131 | tetragonal | {4,4,6} | 8 | (3,5) | |
|
sqc2762 | P4222 | 93 | tetragonal | {4,6,4} | 8 | (3,5) | |
|
sqc2891 | Cmma | 67 | orthorhombic | {4,6,4} | 8 | (3,5) | |
|
sqc2962 | P4222 | 93 | tetragonal | {4,6,4} | 8 | (3,5) | |
|
sqc2963 | P4222 | 93 | tetragonal | {6,4,4} | 8 | (3,5) | |
|
sqc2995 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) | |
|
sqc3032 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3855 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net |
sqc8994
|
sqc2762
|
![]() |
UQC3856 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc9006
|
sqc9001
|
sqc2705
|
![]() |
UQC3857 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc2278
|
sqc8799
|
sqc3032
|
![]() |
UQC3858 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc8314
|
sqc8752
|
sqc2498
|
![]() |
UQC3859 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net |
sqc8774
|
sqc2963
|
![]() |
UQC3860 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net |
sqc8760
|
sqc2891
|
![]() |
UQC3861 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc324
|
sqc9000
|
sqc2995
|
![]() |
UQC3862 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc2834
|
sqc8800
|
sqc324
|
![]() |
UQC3863 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc2993
|
sqc9002
|
sqc324
|
![]() |
UQC3864 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
sqc8347
|
sqc8759
|
sqc2962
|