Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (3,5,2) |
Vertex degrees | {4,6,4} |
2D vertex symbol | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} |
Delaney-Dress Symbol | <1102.2:9:1 3 5 6 8 9,2 3 6 7 9,1 4 5 6 7 8 9:3 6,4 6 4> |
Dual net | hqc990 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc324 | Pmmm | 47 | orthorhombic | {4,4,6} | 4 | (3,5) | ||
sqc2834 | Fmmm | 69 | orthorhombic | {6,4,4} | 8 | (3,5) | ||
sqc2993 | Fmmm | 69 | orthorhombic | {4,4,6} | 8 | (3,5) | ||
sqc9006 | P4/mmm | 123 | tetragonal | {4,6,4} | 16 | (3,5) | ||
sqc8752 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | ||
sqc8759 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | ||
sqc8760 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | ||
sqc8774 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | ||
sqc8799 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | ||
sqc8800 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | ||
sqc8994 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | ||
sqc9000 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | ||
sqc9001 | I4122 | 98 | tetragonal | {4,6,4} | 16 | (3,6) | ||
sqc9002 | Fddd | 70 | orthorhombic | {4,6,4} | 16 | (3,6) | ||
sqc2498 | P4222 | 93 | tetragonal | {6,4,4} | 8 | (3,5) | ||
sqc2705 | P42/mmc | 131 | tetragonal | {4,4,6} | 8 | (3,5) | ||
sqc2762 | P4222 | 93 | tetragonal | {4,6,4} | 8 | (3,5) | ||
sqc2891 | Cmma | 67 | orthorhombic | {4,6,4} | 8 | (3,5) | ||
sqc2962 | P4222 | 93 | tetragonal | {4,6,4} | 8 | (3,5) | ||
sqc2963 | P4222 | 93 | tetragonal | {6,4,4} | 8 | (3,5) | ||
sqc2995 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) | ||
sqc3032 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3855 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net | sqc8994 | sqc2762 | |
UQC3856 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc9006 | sqc9001 | sqc2705 | |
UQC3857 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc2278 | sqc8799 | sqc3032 | |
UQC3858 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc8314 | sqc8752 | sqc2498 | |
UQC3859 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net | sqc8774 | sqc2963 | |
UQC3860 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | No s‑net | sqc8760 | sqc2891 | |
UQC3861 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc324 | sqc9000 | sqc2995 | |
UQC3862 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc2834 | sqc8800 | sqc324 | |
UQC3863 | *22222b | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc2993 | sqc9002 | sqc324 | |
UQC3864 | *22222a | (3,5,2) | {4,6,4} | {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} | sqc8347 | sqc8759 | sqc2962 |