h-net: hqc1102


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,6,4}
2D vertex symbol {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6}
Delaney-Dress Symbol <1102.2:9:1 3 5 6 8 9,2 3 6 7 9,1 4 5 6 7 8 9:3 6,4 6 4>
Dual net hqc990

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc324 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
Full image sqc2834 Fmmm 69 orthorhombic {6,4,4} 8 (3,5)
Full image sqc2993 Fmmm 69 orthorhombic {4,4,6} 8 (3,5)
Full image sqc9006 P4/mmm 123 tetragonal {4,6,4} 16 (3,5)
Full image sqc8752 I4122 98 tetragonal {4,6,4} 16 (3,6)
Full image sqc8759 I4122 98 tetragonal {4,6,4} 16 (3,6)
Full image sqc8760 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8774 I4122 98 tetragonal {4,6,4} 16 (3,6)
Full image sqc8799 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8800 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc8994 I4122 98 tetragonal {4,6,4} 16 (3,6)
Full image sqc9000 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc9001 I4122 98 tetragonal {4,6,4} 16 (3,6)
Full image sqc9002 Fddd 70 orthorhombic {4,6,4} 16 (3,6)
Full image sqc2498 P4222 93 tetragonal {6,4,4} 8 (3,5)
Full image sqc2705 P42/mmc 131 tetragonal {4,4,6} 8 (3,5)
Full image sqc2762 P4222 93 tetragonal {4,6,4} 8 (3,5)
Full image sqc2891 Cmma 67 orthorhombic {4,6,4} 8 (3,5)
Full image sqc2962 P4222 93 tetragonal {4,6,4} 8 (3,5)
Full image sqc2963 P4222 93 tetragonal {6,4,4} 8 (3,5)
Full image sqc2995 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc3032 Cmma 67 orthorhombic {4,4,6} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3855 *22222a (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} No s‑net Snet sqc8994 Snet sqc2762
Tiling details UQC3856 *22222a (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc9006 Snet sqc9001 Snet sqc2705
Tiling details UQC3857 *22222b (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc2278 Snet sqc8799 Snet sqc3032
Tiling details UQC3858 *22222a (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc8314 Snet sqc8752 Snet sqc2498
Tiling details UQC3859 *22222a (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} No s‑net Snet sqc8774 Snet sqc2963
Tiling details UQC3860 *22222b (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} No s‑net Snet sqc8760 Snet sqc2891
Tiling details UQC3861 *22222b (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc324 Snet sqc9000 Snet sqc2995
Tiling details UQC3862 *22222b (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc2834 Snet sqc8800 Snet sqc324
Tiling details UQC3863 *22222b (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc2993 Snet sqc9002 Snet sqc324
Tiling details UQC3864 *22222a (3,5,2) {4,6,4} {3.6.6.3}{3.6.6.3.6.6}{6.6.6.6} Snet sqc8347 Snet sqc8759 Snet sqc2962

Symmetry-lowered hyperbolic tilings