h-net: hqc990


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{6,3}
2D vertex symbol {4.6.4.4.6.4}{6.4.4}
Delaney-Dress Symbol <990.2:9:1 2 3 5 7 8 9,2 4 5 8 9,1 3 6 7 8 9:4 6 4,6 3>
Dual net hqc1102

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2638 Fmmm 69 orthorhombic {3,6} 8 (2,5)
Full image sqc8917 P4/mmm 123 tetragonal {3,6} 16 (2,5)
Full image sqc8441 I4122 98 tetragonal {3,6} 16 (2,6)
Full image sqc8581 I4122 98 tetragonal {3,6} 16 (2,6)
Full image sqc8614 I4122 98 tetragonal {3,6} 16 (2,6)
Full image sqc8678 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8703 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8707 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8715 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc8876 I4122 98 tetragonal {3,6} 16 (2,6)
Full image sqc8880 Fddd 70 orthorhombic {3,6} 16 (2,6)
Full image sqc9032 I4122 98 tetragonal {3,6} 16 (2,6)
Full image sqc251 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc312 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc2620 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc2642 Cmma 67 orthorhombic {6,3} 8 (2,5)
Full image sqc2667 P4222 93 tetragonal {3,6} 8 (2,5)
Full image sqc2889 Cmma 67 orthorhombic {3,6} 8 (2,5)
Full image sqc2968 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc14535 Pmmm 47 orthorhombic {6,3} 4 (2,5)
Full image sqc14591 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc14592 P4222 93 tetragonal {3,6} 8 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1057 *22222a (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} No s‑net Snet sqc8441 Snet sqc14592
Tiling details UQC1058 *22222a (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc2115 Snet sqc8614 Snet sqc2667
Tiling details UQC1059 *22222a (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc7849 Snet sqc8581 Snet sqc2620
Tiling details UQC1060 *22222a (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} No s‑net Snet sqc9032 Snet sqc14591
Tiling details UQC1061 *22222a (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc8917 Snet sqc8876 Snet sqc2968
Tiling details UQC1062 *22222b (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc2638 Snet sqc8703 Snet sqc251
Tiling details UQC1063 *22222b (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc251 Snet sqc8715 Snet sqc2642
Tiling details UQC1064 *22222b (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} No s‑net Snet sqc8880 Snet sqc14535
Tiling details UQC1065 *22222b (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc2155 Snet sqc8707 Snet sqc312
Tiling details UQC1066 *22222b (2,5,3) {6,3} {4.6.4.4.6.4}{6.4.4} Snet sqc251 Snet sqc8678 Snet sqc2889

Symmetry-lowered hyperbolic tilings