h-net: hqc1130


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,4,3}
2D vertex symbol {10.10.10.10}{10.4.4.10}{10.4.4}
Delaney-Dress Symbol <1130.2:9:1 3 5 7 8 9,2 4 5 8 9,1 2 3 6 7 8 9:10 4,4 4 3>
Dual net hqc1038

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc301 Pmmm 47 orthorhombic {4,4,3} 5 (3,5)
Full image sqc2852 Fmmm 69 orthorhombic {4,3,4} 10 (3,5)
Full image sqc9153 P4/mmm 123 tetragonal {4,4,3} 20 (3,5)
Full image sqc8791 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8792 I4122 98 tetragonal {4,4,3} 20 (3,6)
Full image sqc8795 I4122 98 tetragonal {4,4,3} 20 (3,6)
Full image sqc8818 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc8819 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9121 I4122 98 tetragonal {4,4,3} 20 (3,6)
Full image sqc9152 I4122 98 tetragonal {4,4,3} 20 (3,6)
Full image sqc9164 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9165 Fddd 70 orthorhombic {4,4,3} 20 (3,6)
Full image sqc9216 I4122 98 tetragonal {4,4,3} 20 (3,6)
Full image sqc2496 P4222 93 tetragonal {4,3,4} 10 (3,5)
Full image sqc2501 P4222 93 tetragonal {4,4,3} 10 (3,5)
Full image sqc2867 Cmma 67 orthorhombic {4,3,4} 10 (3,5)
Full image sqc2936 P4222 93 tetragonal {4,3,4} 10 (3,5)
Full image sqc3037 Cmma 67 orthorhombic {4,3,4} 10 (3,5)
Full image sqc14597 P4222 93 tetragonal {3,4,4} 10 (3,5)
Full image sqc14598 P42/mmc 131 tetragonal {4,3,4} 10 (3,5)
Full image sqc14618 Pmmm 47 orthorhombic {4,4,3} 5 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4030 *22222a (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} No s‑net Snet sqc9121 Snet sqc14597
Tiling details UQC4031 *22222a (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc8323 Snet sqc8795 Snet sqc2501
Tiling details UQC4032 *22222a (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc9153 Snet sqc9152 Snet sqc2936
Tiling details UQC4033 *22222a (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} No s‑net Snet sqc9216 Snet sqc14598
Tiling details UQC4034 *22222b (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc301 Snet sqc9165 Snet sqc3037
Tiling details UQC4035 *22222b (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} No s‑net Snet sqc9164 Snet sqc14618
Tiling details UQC4036 *22222b (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc301 Snet sqc8791 Snet sqc2867
Tiling details UQC4037 *22222b (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc2852 Snet sqc8819 Snet sqc301
Tiling details UQC4038 *22222a (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc8384 Snet sqc8792 Snet sqc2496
Tiling details UQC4039 *22222b (3,5,2) {4,4,3} {10.10.10.10}{10.4.4.10}{10.4.4} Snet sqc2289 Snet sqc8818 Snet sqc301

Symmetry-lowered hyperbolic tilings