h-net: hqc1267


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,4)
Vertex degrees{7,6}
2D vertex symbol {4.4.3.3.3.4.4}{3.3.3.3.3.3}
Delaney-Dress Symbol <1267.2:10:1 2 3 4 5 7 9 10,2 4 6 7 8 10,1 3 5 8 9 10:4 4 3 3,7 6>
Dual net hqc1479

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc366 Pmmm 47 orthorhombic {6,7} 3 (2,5)
Full image sqc3465 Fmmm 69 orthorhombic {7,6} 6 (2,5)
Full image sqc9455 P4/mmm 123 tetragonal {6,7} 12 (2,5)
Full image sqc9361 I4122 98 tetragonal {6,7} 12 (2,6)
Full image sqc9371 I4122 98 tetragonal {6,7} 12 (2,6)
Full image sqc9450 I4122 98 tetragonal {6,7} 12 (2,6)
Full image sqc9487 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9488 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9496 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9519 I4122 98 tetragonal {6,7} 12 (2,6)
Full image sqc9649 I4122 98 tetragonal {6,7} 12 (2,6)
Full image sqc9651 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc9653 Fddd 70 orthorhombic {6,7} 12 (2,6)
Full image sqc387 Pmmm 47 orthorhombic {7,6} 3 (2,5)
Full image sqc409 Pmmm 47 orthorhombic {6,7} 3 (2,5)
Full image sqc3146 P4222 93 tetragonal {7,6} 6 (2,5)
Full image sqc3204 P4222 93 tetragonal {6,7} 6 (2,5)
Full image sqc3406 P4222 93 tetragonal {7,6} 6 (2,5)
Full image sqc3451 P4222 93 tetragonal {7,6} 6 (2,5)
Full image sqc3467 Cmma 67 orthorhombic {6,7} 6 (2,5)
Full image sqc3527 Cmma 67 orthorhombic {6,7} 6 (2,5)
Full image sqc3722 P4222 93 tetragonal {6,7} 6 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1611 *22222a (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} No s‑net Snet sqc9371 Snet sqc3204
Tiling details UQC1612 *22222a (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc2411 Snet sqc9361 Snet sqc3146
Tiling details UQC1613 *22222a (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc9455 Snet sqc9649 Snet sqc3722
Tiling details UQC1614 *22222a (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc9026 Snet sqc9519 Snet sqc3451
Tiling details UQC1615 *22222b (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc2625 Snet sqc9487 Snet sqc387
Tiling details UQC1616 *22222b (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc366 Snet sqc9488 Snet sqc3467
Tiling details UQC1617 *22222b (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc3465 Snet sqc9653 Snet sqc366
Tiling details UQC1618 *22222b (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} No s‑net Snet sqc9496 Snet sqc409
Tiling details UQC1619 *22222b (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} Snet sqc366 Snet sqc9651 Snet sqc3527
Tiling details UQC1620 *22222a (2,5,4) {7,6} {4.4.3.3.3.4.4}{3.3.3.3.3.3} No s‑net Snet sqc9450 Snet sqc3406

Symmetry-lowered hyperbolic tilings