| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,5,4) |
| Vertex degrees | {8,4} |
| 2D vertex symbol | {4.4.3.3.3.3.4.4}{3.3.3.3} |
| Delaney-Dress Symbol | <1282.2:10:1 2 3 4 5 7 9 10,2 4 6 7 10 9,1 3 5 8 9 10:4 4 3 3,8 4> |
| Dual net | hqc1494 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc3352 | Fmmm | 69 | orthorhombic | {4,8} | 6 | (2,5) | |
|
sqc9427 | P4/mmm | 123 | tetragonal | {8,4} | 12 | (2,5) | |
|
sqc9360 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,6) | |
|
sqc9370 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,6) | |
|
sqc9429 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,6) | |
|
sqc9446 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,6) | |
|
sqc9448 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,6) | |
|
sqc9484 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,6) | |
|
sqc9485 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,6) | |
|
sqc9502 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,6) | |
|
sqc9646 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,6) | |
|
sqc9647 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,6) | |
|
sqc360 | Pmmm | 47 | orthorhombic | {4,8} | 3 | (2,5) | |
|
sqc394 | Pmmm | 47 | orthorhombic | {8,4} | 3 | (2,5) | |
|
sqc408 | Pmmm | 47 | orthorhombic | {8,4} | 3 | (2,5) | |
|
sqc3165 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc3203 | P4222 | 93 | tetragonal | {8,4} | 6 | (2,5) | |
|
sqc3393 | P4222 | 93 | tetragonal | {8,4} | 6 | (2,5) | |
|
sqc3395 | P4222 | 93 | tetragonal | {8,4} | 6 | (2,5) | |
|
sqc3463 | Cmma | 67 | orthorhombic | {4,8} | 6 | (2,5) | |
|
sqc3464 | Cmma | 67 | orthorhombic | {8,4} | 6 | (2,5) | |
|
sqc3725 | P4222 | 93 | tetragonal | {8,4} | 6 | (2,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC1683 | *22222a | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} | No s‑net |
sqc9370
|
sqc3203
|
![]() |
UQC1684 | *22222a | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc2409
|
sqc9360
|
sqc3165
|
![]() |
UQC1685 | *22222b | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc2623
|
sqc9485
|
sqc394
|
![]() |
UQC1686 | *22222b | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc3352
|
sqc9647
|
sqc360
|
![]() |
UQC1687 | *22222b | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc360
|
sqc9484
|
sqc3464
|
![]() |
UQC1688 | *22222a | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc9427
|
sqc9429
|
sqc3725
|
![]() |
UQC1689 | *22222a | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc8866
|
sqc9448
|
sqc3395
|
![]() |
UQC1690 | *22222a | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} | No s‑net |
sqc9446
|
sqc3393
|
![]() |
UQC1691 | *22222b | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} | No s‑net |
sqc9502
|
sqc408
|
![]() |
UQC1692 | *22222b | (2,5,4) | {8,4} | {4.4.3.3.3.3.4.4}{3.3.3.3} |
sqc360
|
sqc9646
|
sqc3463
|