h-net: hqc1494


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,5,2)
Vertex degrees{4,4,3,3}
2D vertex symbol {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4}
Delaney-Dress Symbol <1494.2:10:1 3 5 7 9 10,2 4 6 10 8 9,1 2 3 4 5 8 9 10:8 4,4 4 3 3>
Dual net hqc1282

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3657 Fmmm 69 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3829 Fmmm 69 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc9874 P4/mmm 123 tetragonal {4,4,3,3} 24 (4,5)
Full image sqc9568 I4122 98 tetragonal {4,4,3,3} 24 (4,6)
Full image sqc9569 Fddd 70 orthorhombic {4,4,3,3} 24 (4,6)
Full image sqc9594 I4122 98 tetragonal {4,4,3,3} 24 (4,6)
Full image sqc9604 Fddd 70 orthorhombic {4,4,3,3} 24 (4,6)
Full image sqc9607 Fddd 70 orthorhombic {4,4,3,3} 24 (4,6)
Full image sqc9618 I4122 98 tetragonal {4,4,3,3} 24 (4,6)
Full image sqc9807 I4122 98 tetragonal {4,4,3,3} 24 (4,6)
Full image sqc9854 Fddd 70 orthorhombic {4,4,3,3} 24 (4,6)
Full image sqc9855 Fddd 70 orthorhombic {4,4,3,3} 24 (4,6)
Full image sqc9878 I4122 98 tetragonal {4,4,3,3} 24 (4,6)
Full image sqc458 Pmmm 47 orthorhombic {4,4,3,3} 6 (4,5)
Full image sqc3095 P4222 93 tetragonal {3,3,4,4} 12 (4,5)
Full image sqc3192 P4222 93 tetragonal {4,3,4,3} 12 (4,5)
Full image sqc3270 Cmma 67 orthorhombic {4,3,4,3} 12 (4,5)
Full image sqc3271 P4222 93 tetragonal {3,4,3,4} 12 (4,5)
Full image sqc3426 P42/mmc 131 tetragonal {4,3,4,3} 12 (4,5)
Full image sqc3442 P4222 93 tetragonal {3,4,4,3} 12 (4,5)
Full image sqc3714 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)
Full image sqc3830 Cmma 67 orthorhombic {3,4,3,4} 12 (4,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4625 *22222a (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} No s‑net Snet sqc9807 Snet sqc3095
Tiling details UQC4626 *22222a (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc9295 Snet sqc9568 Snet sqc3192
Tiling details UQC4627 *22222b (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc3089 Snet sqc9604 Snet sqc3270
Tiling details UQC4628 *22222b (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} No s‑net Snet sqc9569 Snet sqc3714
Tiling details UQC4629 *22222b (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc3657 Snet sqc9607 Snet sqc458
Tiling details UQC4630 *22222b (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc3829 Snet sqc9854 Snet sqc458
Tiling details UQC4631 *22222a (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} No s‑net Snet sqc9594 Snet sqc3442
Tiling details UQC4632 *22222b (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc458 Snet sqc9855 Snet sqc3830
Tiling details UQC4633 *22222a (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc9301 Snet sqc9618 Snet sqc3271
Tiling details UQC4634 *22222a (4,5,2) {4,4,3,3} {8.8.8.8}{8.8.8.8}{8.4.8}{8.8.4} Snet sqc9874 Snet sqc9878 Snet sqc3426

Symmetry-lowered hyperbolic tilings