| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,5,3) |
| Vertex degrees | {3,8} |
| 2D vertex symbol | {4.8.4}{4.4.8.8.4.4.8.8} |
| Delaney-Dress Symbol | <1424.2:10:1 2 3 5 7 8 9 10,2 4 10 8 9,3 8 6 7 9 10:4 4 8,3 8> |
| Dual net | hqc1513 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc369 | Pmmm | 47 | orthorhombic | {3,8} | 5 | (2,5) | |
|
sqc9374 | P4/mmm | 123 | tetragonal | {8,3} | 20 | (2,5) | |
|
sqc9375 | I4122 | 98 | tetragonal | {8,3,3} | 20 | (3,6) | |
|
sqc9376 | I4122 | 98 | tetragonal | {8,3,3} | 20 | (3,6) | |
|
sqc9402 | Fddd | 70 | orthorhombic | {8,3,3} | 20 | (3,6) | |
|
sqc9403 | I4122 | 98 | tetragonal | {8,3,3} | 20 | (3,6) | |
|
sqc9486 | Fddd | 70 | orthorhombic | {8,3,3} | 20 | (3,6) | |
|
sqc9495 | Fddd | 70 | orthorhombic | {8,3,3} | 20 | (3,6) | |
|
sqc9508 | I4122 | 98 | tetragonal | {8,3,3} | 20 | (3,6) | |
|
sqc9644 | Fddd | 70 | orthorhombic | {8,3,3} | 20 | (3,6) | |
|
sqc9658 | I4122 | 98 | tetragonal | {8,3,3} | 20 | (3,6) | |
|
sqc9694 | Fddd | 70 | orthorhombic | {8,3,3} | 20 | (3,6) | |
|
sqc370 | Pmmm | 47 | orthorhombic | {8,3} | 5 | (2,5) | |
|
sqc3097 | P4222 | 93 | tetragonal | {3,8} | 10 | (2,5) | |
|
sqc3098 | P4222 | 93 | tetragonal | {3,8} | 10 | (2,5) | |
|
sqc3130 | P4222 | 93 | tetragonal | {3,8} | 10 | (2,5) | |
|
sqc3213 | P42/mmc | 131 | tetragonal | {3,8} | 10 | (2,5) | |
|
sqc3218 | P4222 | 93 | tetragonal | {3,8} | 10 | (2,5) | |
|
sqc3343 | Cmma | 67 | orthorhombic | {8,3} | 10 | (2,5) | |
|
sqc3386 | Cmma | 67 | orthorhombic | {3,8} | 10 | (2,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC1312 | *22222a | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} | No s‑net |
sqc9376
|
sqc3098
|
![]() |
UQC1313 | *22222a | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc9374
|
sqc9375
|
sqc3097
|
![]() |
UQC1314 | *22222b | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc369
|
sqc9644
|
sqc3386
|
![]() |
UQC1315 | *22222b | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc3071
|
sqc9486
|
sqc369
|
![]() |
UQC1316 | *22222a | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc2984
|
sqc9403
|
sqc3130
|
![]() |
UQC1317 | *22222b | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc369
|
sqc9402
|
sqc3343
|
![]() |
UQC1318 | *22222a | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} | No s‑net |
sqc9658
|
sqc3213
|
![]() |
UQC1319 | *22222b | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc3072
|
sqc9495
|
sqc369
|
![]() |
UQC1320 | *22222b | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} | No s‑net |
sqc9694
|
sqc370
|
![]() |
UQC1321 | *22222a | (2,5,3) | {8,3} | {4.8.4}{4.4.8.8.4.4.8.8} |
sqc9287
|
sqc9508
|
sqc3218
|