h-net: hqc1424


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{3,8}
2D vertex symbol {4.8.4}{4.4.8.8.4.4.8.8}
Delaney-Dress Symbol <1424.2:10:1 2 3 5 7 8 9 10,2 4 10 8 9,3 8 6 7 9 10:4 4 8,3 8>
Dual net hqc1513

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc369 Pmmm 47 orthorhombic {3,8} 5 (2,5)
Full image sqc9374 P4/mmm 123 tetragonal {8,3} 20 (2,5)
Full image sqc9375 I4122 98 tetragonal {8,3,3} 20 (3,6)
Full image sqc9376 I4122 98 tetragonal {8,3,3} 20 (3,6)
Full image sqc9402 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9403 I4122 98 tetragonal {8,3,3} 20 (3,6)
Full image sqc9486 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9495 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9508 I4122 98 tetragonal {8,3,3} 20 (3,6)
Full image sqc9644 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc9658 I4122 98 tetragonal {8,3,3} 20 (3,6)
Full image sqc9694 Fddd 70 orthorhombic {8,3,3} 20 (3,6)
Full image sqc370 Pmmm 47 orthorhombic {8,3} 5 (2,5)
Full image sqc3097 P4222 93 tetragonal {3,8} 10 (2,5)
Full image sqc3098 P4222 93 tetragonal {3,8} 10 (2,5)
Full image sqc3130 P4222 93 tetragonal {3,8} 10 (2,5)
Full image sqc3213 P42/mmc 131 tetragonal {3,8} 10 (2,5)
Full image sqc3218 P4222 93 tetragonal {3,8} 10 (2,5)
Full image sqc3343 Cmma 67 orthorhombic {8,3} 10 (2,5)
Full image sqc3386 Cmma 67 orthorhombic {3,8} 10 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1312 *22222a (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} No s‑net Snet sqc9376 Snet sqc3098
Tiling details UQC1313 *22222a (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc9374 Snet sqc9375 Snet sqc3097
Tiling details UQC1314 *22222b (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc369 Snet sqc9644 Snet sqc3386
Tiling details UQC1315 *22222b (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc3071 Snet sqc9486 Snet sqc369
Tiling details UQC1316 *22222a (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc2984 Snet sqc9403 Snet sqc3130
Tiling details UQC1317 *22222b (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc369 Snet sqc9402 Snet sqc3343
Tiling details UQC1318 *22222a (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} No s‑net Snet sqc9658 Snet sqc3213
Tiling details UQC1319 *22222b (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc3072 Snet sqc9495 Snet sqc369
Tiling details UQC1320 *22222b (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} No s‑net Snet sqc9694 Snet sqc370
Tiling details UQC1321 *22222a (2,5,3) {8,3} {4.8.4}{4.4.8.8.4.4.8.8} Snet sqc9287 Snet sqc9508 Snet sqc3218

Symmetry-lowered hyperbolic tilings