| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,6,4) |
| Vertex degrees | {7,4} |
| 2D vertex symbol | {4.4.4.3.4.4.4}{4.4.3.3} |
| Delaney-Dress Symbol | <1667.2:11:1 2 3 4 5 7 9 10 11,2 4 6 11 8 10,1 3 5 8 9 10 11:4 4 4 3,7 4> |
| Dual net | hqc1787 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc4333 | Fmmm | 69 | orthorhombic | {7,4} | 8 | (2,6) | |
|
sqc10241 | P4/mmm | 123 | tetragonal | {7,4} | 16 | (2,6) | |
|
sqc10127 | I4122 | 98 | tetragonal | {7,4} | 16 | (2,7) | |
|
sqc10139 | I4122 | 98 | tetragonal | {7,4} | 16 | (2,7) | |
|
sqc10237 | I4122 | 98 | tetragonal | {7,4} | 16 | (2,7) | |
|
sqc10250 | Fddd | 70 | orthorhombic | {7,4} | 16 | (2,7) | |
|
sqc10261 | Fddd | 70 | orthorhombic | {7,4} | 16 | (2,7) | |
|
sqc10277 | I4122 | 98 | tetragonal | {7,4} | 16 | (2,7) | |
|
sqc10403 | Fddd | 70 | orthorhombic | {7,4} | 16 | (2,7) | |
|
sqc10413 | I4122 | 98 | tetragonal | {7,4} | 16 | (2,7) | |
|
sqc10414 | Fddd | 70 | orthorhombic | {7,4} | 16 | (2,7) | |
|
sqc10415 | Fddd | 70 | orthorhombic | {7,4} | 16 | (2,7) | |
|
sqc564 | Pmmm | 47 | orthorhombic | {7,4} | 4 | (2,6) | |
|
sqc591 | Pmmm | 47 | orthorhombic | {7,4} | 4 | (2,6) | |
|
sqc600 | Pmmm | 47 | orthorhombic | {7,4} | 4 | (2,6) | |
|
sqc4081 | P4222 | 93 | tetragonal | {7,4} | 8 | (2,6) | |
|
sqc4120 | P4222 | 93 | tetragonal | {7,4} | 8 | (2,6) | |
|
sqc4303 | P4222 | 93 | tetragonal | {7,4} | 8 | (2,6) | |
|
sqc4309 | P4222 | 93 | tetragonal | {7,4} | 8 | (2,6) | |
|
sqc4334 | Cmma | 67 | orthorhombic | {7,4} | 8 | (2,6) | |
|
sqc4357 | Cmma | 67 | orthorhombic | {4,7} | 8 | (2,6) | |
|
sqc4545 | P4222 | 93 | tetragonal | {4,7} | 8 | (2,6) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC2049 | *22222a | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} | No s‑net |
sqc10139
|
sqc4120
|
![]() |
UQC2050 | *22222a | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc3243
|
sqc10127
|
sqc4081
|
![]() |
UQC2051 | *22222a | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc9773
|
sqc10277
|
sqc4309
|
![]() |
UQC2052 | *22222b | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc3401
|
sqc10403
|
sqc600
|
![]() |
UQC2053 | *22222b | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc4333
|
sqc10414
|
sqc564
|
![]() |
UQC2054 | *22222b | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc564
|
sqc10250
|
sqc4334
|
![]() |
UQC2055 | *22222b | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} | No s‑net |
sqc10261
|
sqc591
|
![]() |
UQC2056 | *22222a | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} | No s‑net |
sqc10237
|
sqc4303
|
![]() |
UQC2057 | *22222b | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc564
|
sqc10415
|
sqc4357
|
![]() |
UQC2058 | *22222a | (2,6,4) | {7,4} | {4.4.4.3.4.4.4}{4.4.3.3} |
sqc10241
|
sqc10413
|
sqc4545
|