h-net: hqc2231


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(5,6,2)
Vertex degrees{4,8,3,4,4}
2D vertex symbol {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4}{4.4.4.4}{4.4.4.4}
Delaney-Dress Symbol <2231.2:13:1 3 5 7 9 11 13,2 4 5 8 13 10 12,1 2 3 6 7 8 9 10 11 12 13:5 4,4 8 3 4 4>
Dual net hqc2149

Derived s-nets

s-nets with faithful topology

20 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5765 Fmmm 69 orthorhombic {4,3,4,8,4} 12 (5,6)
Full image sqc5893 Fmmm 69 orthorhombic {4,3,8,4,4} 12 (5,6)
Full image sqc11467 P4/mmm 123 tetragonal {4,8,3,4,4} 24 (5,6)
Full image sqc11337 I4122 98 tetragonal {4,8,3,4,4} 24 (5,7)
Full image sqc11388 I4122 98 tetragonal {4,8,3,4,4} 24 (5,7)
Full image sqc11389 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11395 I4122 98 tetragonal {4,8,3,4,4} 24 (5,7)
Full image sqc11396 I4122 98 tetragonal {4,8,3,4,4} 24 (5,7)
Full image sqc11403 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11404 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11464 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11465 Fddd 70 orthorhombic {4,8,3,4,4} 24 (5,7)
Full image sqc11485 I4122 98 tetragonal {4,8,3,4,4} 24 (5,7)
Full image sqc1095 Pmmm 47 orthorhombic {4,8,3,4,4} 6 (5,6)
Full image sqc5763 P4222 93 tetragonal {3,4,4,8,4} 12 (5,6)
Full image sqc5764 Cmma 67 orthorhombic {3,4,8,4,4} 12 (5,6)
Full image sqc5928 P4222 93 tetragonal {4,4,3,8,4} 12 (5,6)
Full image sqc5965 P4222 93 tetragonal {4,4,4,3,8} 12 (5,6)
Full image sqc5994 Cmma 67 orthorhombic {4,8,3,4,4} 12 (5,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5621 *22222a (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... No s‑net Snet sqc11337 No s‑net
Tiling details UQC5622 *22222a (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc11276 Snet sqc11388 Snet sqc5928
Tiling details UQC5623 *22222b (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc5765 Snet sqc11465 Snet sqc1095
Tiling details UQC5624 *22222b (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc5893 Snet sqc11404 Snet sqc1095
Tiling details UQC5625 *22222b (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc1095 Snet sqc11464 Snet sqc5764
Tiling details UQC5626 *22222b (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... No s‑net Snet sqc11389 No s‑net
Tiling details UQC5627 *22222a (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... No s‑net Snet sqc11396 No s‑net
Tiling details UQC5628 *22222a (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc11467 Snet sqc11485 Snet sqc5763
Tiling details UQC5629 *22222a (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc11272 Snet sqc11395 Snet sqc5965
Tiling details UQC5630 *22222b (5,6,2) {4,8,3,4,4} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4... Snet sqc5618 Snet sqc11403 Snet sqc5994

Symmetry-lowered hyperbolic tilings