h-net: hqc2243


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(5,6,2)
Vertex degrees{4,4,4,6,4}
2D vertex symbol {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.3.7.3.3}{3.3.3.3}
Delaney-Dress Symbol <2243.2:13:1 3 5 7 9 11 13,2 4 6 7 10 13 12,1 2 3 4 5 8 9 10 11 12 13:7 3,4 4 4 6 4>
Dual net hqc2174

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5894 Fmmm 69 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5997 Fmmm 69 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc11492 P4/mmm 123 tetragonal {4,4,4,6,4} 24 (5,6)
Full image sqc11391 I4122 98 tetragonal {4,4,4,6,4} 24 (5,7)
Full image sqc11392 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11401 I4122 98 tetragonal {4,4,4,6,4} 24 (5,7)
Full image sqc11407 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11408 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11423 I4122 98 tetragonal {4,4,4,6,4} 24 (5,7)
Full image sqc11493 I4122 98 tetragonal {4,4,4,6,4} 24 (5,7)
Full image sqc11494 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc11499 I4122 98 tetragonal {4,4,4,6,4} 24 (5,7)
Full image sqc11507 Fddd 70 orthorhombic {4,4,4,6,4} 24 (5,7)
Full image sqc1048 Pmmm 47 orthorhombic {4,6,4,4,4} 6 (5,6)
Full image sqc5625 P4222 93 tetragonal {6,4,4,4,4} 12 (5,6)
Full image sqc5668 P4222 93 tetragonal {4,4,6,4,4} 12 (5,6)
Full image sqc5767 P4222 93 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc5925 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6000 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6009 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6010 P42/mmc 131 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc6011 P4222 93 tetragonal {4,4,4,6,4} 12 (5,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5664 *22222a (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... No s‑net Snet sqc11493 Snet sqc5625
Tiling details UQC5665 *22222a (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc11283 Snet sqc11391 Snet sqc5668
Tiling details UQC5666 *22222b (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... No s‑net Snet sqc11392 Snet sqc5925
Tiling details UQC5667 *22222b (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc5620 Snet sqc11407 Snet sqc6000
Tiling details UQC5668 *22222b (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc5997 Snet sqc11494 Snet sqc1048
Tiling details UQC5669 *22222a (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... No s‑net Snet sqc11401 Snet sqc5767
Tiling details UQC5670 *22222b (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc1048 Snet sqc11507 Snet sqc6009
Tiling details UQC5671 *22222b (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc5894 Snet sqc11408 Snet sqc1048
Tiling details UQC5672 *22222a (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc11282 Snet sqc11423 Snet sqc6011
Tiling details UQC5673 *22222a (5,6,2) {4,4,4,6,4} {7.7.7.7}{7.7.7.7}{7.3.3.7}{7.3.... Snet sqc11492 Snet sqc11499 Snet sqc6010

Symmetry-lowered hyperbolic tilings