| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,4,2) |
| Vertex degrees | {4,6} |
| 2D vertex symbol | {3.8.8.3}{3.8.8.3.8.8} |
| Delaney-Dress Symbol | <472.2:7:1 3 5 6 7,2 3 6 7,1 4 5 6 7:3 8,4 6> |
| Dual net | hqc478 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc63 | Pmmm | 47 | orthorhombic | {6,4} | 3 | (2,4) | |
|
sqc1359 | Fmmm | 69 | orthorhombic | {6,4} | 6 | (2,4) | |
|
sqc6596 | P4/mmm | 123 | tetragonal | {4,6} | 12 | (2,4) | |
|
sqc6322 | I4122 | 98 | tetragonal | {4,6} | 12 | (2,5) | |
|
sqc6543 | Fddd | 70 | orthorhombic | {4,6} | 12 | (2,5) | |
|
sqc6546 | I4122 | 98 | tetragonal | {4,6} | 12 | (2,5) | |
|
sqc6557 | I4122 | 98 | tetragonal | {4,6} | 12 | (2,5) | |
|
sqc6560 | Fddd | 70 | orthorhombic | {4,6} | 12 | (2,5) | |
|
sqc6561 | Fddd | 70 | orthorhombic | {4,6} | 12 | (2,5) | |
|
sqc6595 | I4122 | 98 | tetragonal | {4,6} | 12 | (2,5) | |
|
sqc6734 | Fddd | 70 | orthorhombic | {4,6} | 12 | (2,5) | |
|
sqc6735 | Fddd | 70 | orthorhombic | {4,6} | 12 | (2,5) | |
|
sqc6789 | I4122 | 98 | tetragonal | {4,6} | 12 | (2,5) | |
|
sqc1205 | P42/mmc | 131 | tetragonal | {4,6} | 6 | (2,4) | |
|
sqc1242 | P4222 | 93 | tetragonal | {6,4} | 6 | (2,4) | |
|
sqc1243 | P4222 | 93 | tetragonal | {4,6} | 6 | (2,4) | |
|
sqc1322 | P42/mmc | 131 | tetragonal | {6,4} | 6 | (2,4) | |
|
sqc1373 | P42/mcm | 132 | tetragonal | {6,4} | 6 | (2,4) | |
|
sqc1399 | Cmma | 67 | orthorhombic | {6,4} | 6 | (2,4) | |
|
sqc1421 | Cmma | 67 | orthorhombic | {6,4} | 6 | (2,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC344 | *22222a | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} | No s‑net |
sqc6322
|
sqc1243
|
![]() |
UQC345 | *22222b | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc63
|
sqc6543
|
sqc1399
|
![]() |
UQC346 | *22222a | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc6025
|
sqc6546
|
sqc1205
|
![]() |
UQC347 | *22222a | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} | No s‑net |
sqc6789
|
sqc1322
|
![]() |
UQC348 | *22222b | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc1117
|
sqc6560
|
sqc63
|
![]() |
UQC349 | *22222a | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc6596
|
sqc6595
|
sqc1373
|
![]() |
UQC350 | *22222b | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} | No s‑net |
sqc6735
|
sqc63
|
![]() |
UQC351 | *22222b | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc63
|
sqc6734
|
sqc1421
|
![]() |
UQC352 | *22222b | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc1359
|
sqc6561
|
sqc63
|
![]() |
UQC353 | *22222a | (2,4,2) | {4,6} | {3.8.8.3}{3.8.8.3.8.8} |
sqc6018
|
sqc6557
|
sqc1242
|