h-net: hqc573


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{6,4}
2D vertex symbol {4.4.4.4.4.4}{4.4.4.4}
Delaney-Dress Symbol <573.2:8:1 2 3 4 5 7 8,2 4 6 8,1 3 5 6 7 8:4 4 4,6 4>
Dual net hqc666

Derived s-nets

s-nets with faithful topology

25 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1928 Fmmm 69 orthorhombic {6,4} 6 (2,5)
Full image sqc7579 P4/mmm 123 tetragonal {4,6} 12 (2,5)
Full image sqc7658 Cmma 67 orthorhombic {4,6} 12 (2,8)
Full image sqc7427 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc7428 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc7566 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc7578 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc7589 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7621 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7654 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc7661 C2/c 15 monoclinic {4,6,6} 12 (3,9)
Full image sqc7736 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7737 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc7812 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc112 Pmmm 47 orthorhombic {4,6} 3 (2,5)
Full image sqc122 Pmmm 47 orthorhombic {4,6} 3 (2,5)
Full image sqc151 Pmmm 47 orthorhombic {6,4} 3 (2,5)
Full image sqc1717 P4222 93 tetragonal {6,4} 6 (2,5)
Full image sqc1720 P4222 93 tetragonal {4,6} 6 (2,5)
Full image sqc1908 P4222 93 tetragonal {4,6} 6 (2,5)
Full image sqc1916 P4222 93 tetragonal {4,6} 6 (2,5)
Full image sqc1929 Cmma 67 orthorhombic {4,6} 6 (2,5)
Full image sqc1982 Cmma 67 orthorhombic {6,4} 6 (2,5)
Full image sqc1991 P4222 93 tetragonal {4,6} 6 (2,5)
Full image sqc7835 Imma 74 orthorhombic {4,6} 12 (2,8)

s-nets with edge collapse


Derived U-tilings

11 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC677 *22222a (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc5696 Snet sqc7428 Snet sqc1720
Tiling details UQC678 *22222a (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc1253 Snet sqc7427 Snet sqc1717
Tiling details UQC679 *22222a (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc7579 Snet sqc7578 Snet sqc1991
Tiling details UQC680 *22222a (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc6829 Snet sqc7654 Snet sqc1916
Tiling details UQC681 *22222b (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc1309 Snet sqc7812 Snet sqc151
Tiling details UQC682 *22222b (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc1928 Snet sqc7737 Snet sqc112
Tiling details UQC683 *22222b (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc112 Snet sqc7589 Snet sqc1929
Tiling details UQC684 *22222a (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc5941 Snet sqc7566 Snet sqc1908
Tiling details UQC685 *22222b (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc1110 Snet sqc7621 Snet sqc122
Tiling details UQC686 *22222b (2,5,3) {6,4} {4.4.4.4.4.4}{4.4.4.4} Snet sqc112 Snet sqc7736 Snet sqc1982
Tiling details UQC3171 *222222a (2,8,6) {4,6} {4.4.4.4.4.4}{4.4.4.4} Snet sqc7658 Snet sqc7661 Snet sqc7835

Symmetry-lowered hyperbolic tilings