h-net: hqc666


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,4,4}
2D vertex symbol {4.6.6.4}{6.6.6.6}{6.6.6.6}
Delaney-Dress Symbol <666.2:8:1 2 3 5 7 8,2 4 6 8,1 3 4 5 6 7 8:4 6,4 4 4>
Dual net hqc573

Derived s-nets

s-nets with faithful topology

25 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2058 Fmmm 69 orthorhombic {4,4,4} 8 (3,5)
Full image sqc2062 Fmmm 69 orthorhombic {4,4,4} 8 (3,5)
Full image sqc8071 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8121 P4/mmm 123 tetragonal {4,4,4} 16 (3,5)
Full image sqc7713 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7714 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7722 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7745 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7758 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7760 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7761 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7762 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7788 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc8082 C2/c 15 monoclinic {4,4,4,4,4,4} 16 (6,9)
Full image sqc8126 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc146 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
Full image sqc1581 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1754 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1769 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1898 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1924 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc2061 Cmma 67 orthorhombic {4,4,4} 8 (3,5)
Full image sqc2097 Cmma 67 orthorhombic {4,4,4} 8 (3,5)
Full image sqc2107 Cmma 67 orthorhombic {4,4,4} 8 (3,5)
Full image sqc8096 Imma 74 orthorhombic {4,4,4,4,4,4} 16 (6,8)

s-nets with edge collapse


Derived U-tilings

11 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3510 *22222a (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc7348 Snet sqc7713 Snet sqc1754
Tiling details UQC3511 *22222a (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc6887 Snet sqc7722 Snet sqc1581
Tiling details UQC3512 *22222b (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc1401 Snet sqc7714 Snet sqc2107
Tiling details UQC3513 *22222b (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc1551 Snet sqc7745 Snet sqc2097
Tiling details UQC3514 *22222a (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc6646 Snet sqc7758 Snet sqc1924
Tiling details UQC3515 *22222b (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc2058 Snet sqc7761 Snet sqc146
Tiling details UQC3516 *22222b (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc2062 Snet sqc7762 Snet sqc146
Tiling details UQC3517 *22222b (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc146 Snet sqc7760 Snet sqc2061
Tiling details UQC3518 *22222a (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc8121 Snet sqc8126 Snet sqc1898
Tiling details UQC3519 *22222a (3,5,2) {4,4,4} {4.6.6.4}{6.6.6.6}{6.6.6.6} Snet sqc7345 Snet sqc7788 Snet sqc1769
Tiling details UQC6021 *222222a (6,8,2) {4,4,4,4,4,4} {4.6.6.4}{4.4.6.6}{6.6.6.6}{6.6.... Snet sqc8071 Snet sqc8082 Snet sqc8096

Symmetry-lowered hyperbolic tilings