Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,5,3) |
Vertex degrees | {4,8} |
2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4} |
Delaney-Dress Symbol | <603.2:8:1 2 3 5 6 7 8,2 4 6 8,1 3 4 5 7 8:4 4 4,4 8> |
Dual net | hqc750 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc1787 | Fmmm | 69 | orthorhombic | {4,8} | 6 | (2,5) | ||
sqc7437 | Cmma | 67 | orthorhombic | {8,4} | 12 | (2,8) | ||
sqc7409 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | ||
sqc7414 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | ||
sqc7438 | C2/c | 15 | monoclinic | {8,4,4} | 12 | (3,9) | ||
sqc7474 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | ||
sqc7480 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | ||
sqc7481 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,5) | ||
sqc7526 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | ||
sqc7528 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | ||
sqc7562 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,5) | ||
sqc7735 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | ||
sqc7746 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | ||
sqc76 | Pmmm | 47 | orthorhombic | {4,8} | 3 | (2,5) | ||
sqc1580 | P42/mmc | 131 | tetragonal | {4,8} | 6 | (2,5) | ||
sqc1590 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | ||
sqc1643 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | ||
sqc1645 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | ||
sqc1788 | Cmma | 67 | orthorhombic | {8,4} | 6 | (2,5) | ||
sqc1812 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | ||
sqc1864 | Cmma | 67 | orthorhombic | {4,8} | 6 | (2,5) | ||
sqc7433 | Imma | 74 | orthorhombic | {8,4} | 12 | (2,8) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC695 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc4873 | sqc7414 | sqc1580 | |
UQC696 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc5699 | sqc7409 | sqc1590 | |
UQC697 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc4886 | sqc7746 | sqc1643 | |
UQC698 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc55 | sqc7528 | sqc1864 | |
UQC699 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc55 | sqc7735 | sqc1788 | |
UQC700 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc1787 | sqc7481 | sqc55 | |
UQC701 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc1470 | sqc7526 | sqc55 | |
UQC702 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc897 | sqc7474 | sqc76 | |
UQC703 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc7078 | sqc7480 | sqc1645 | |
UQC704 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc6449 | sqc7562 | sqc1812 | |
UQC3207 | *222222a | (2,8,6) | {8,4} | {4.4.4.4}{4.4.4.4.4.4.4.4} | sqc7437 | sqc7438 | sqc7433 |