| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,5,3) |
| Vertex degrees | {4,8} |
| 2D vertex symbol | {4.4.4.4}{4.4.4.4.4.4.4.4} |
| Delaney-Dress Symbol | <603.2:8:1 2 3 5 6 7 8,2 4 6 8,1 3 4 5 7 8:4 4 4,4 8> |
| Dual net | hqc750 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc1787 | Fmmm | 69 | orthorhombic | {4,8} | 6 | (2,5) | |
|
sqc7437 | Cmma | 67 | orthorhombic | {8,4} | 12 | (2,8) | |
|
sqc7409 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | |
|
sqc7414 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | |
|
sqc7438 | C2/c | 15 | monoclinic | {8,4,4} | 12 | (3,9) | |
|
sqc7474 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | |
|
sqc7480 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | |
|
sqc7481 | Fddd | 70 | orthorhombic | {8,4} | 12 | (2,5) | |
|
sqc7526 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | |
|
sqc7528 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | |
|
sqc7562 | I4122 | 98 | tetragonal | {8,4} | 12 | (2,5) | |
|
sqc7735 | Fddd | 70 | orthorhombic | {4,8} | 12 | (2,5) | |
|
sqc7746 | I4122 | 98 | tetragonal | {4,8} | 12 | (2,5) | |
|
sqc76 | Pmmm | 47 | orthorhombic | {4,8} | 3 | (2,5) | |
|
sqc1580 | P42/mmc | 131 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc1590 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc1643 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc1645 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc1788 | Cmma | 67 | orthorhombic | {8,4} | 6 | (2,5) | |
|
sqc1812 | P4222 | 93 | tetragonal | {4,8} | 6 | (2,5) | |
|
sqc1864 | Cmma | 67 | orthorhombic | {4,8} | 6 | (2,5) | |
|
sqc7433 | Imma | 74 | orthorhombic | {8,4} | 12 | (2,8) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC695 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc4873
|
sqc7414
|
sqc1580
|
![]() |
UQC696 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc5699
|
sqc7409
|
sqc1590
|
![]() |
UQC697 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc4886
|
sqc7746
|
sqc1643
|
![]() |
UQC698 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc55
|
sqc7528
|
sqc1864
|
![]() |
UQC699 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc55
|
sqc7735
|
sqc1788
|
![]() |
UQC700 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc1787
|
sqc7481
|
sqc55
|
![]() |
UQC701 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc1470
|
sqc7526
|
sqc55
|
![]() |
UQC702 | *22222b | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc897
|
sqc7474
|
sqc76
|
![]() |
UQC703 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc7078
|
sqc7480
|
sqc1645
|
![]() |
UQC704 | *22222a | (2,5,3) | {4,8} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc6449
|
sqc7562
|
sqc1812
|
![]() |
UQC3207 | *222222a | (2,8,6) | {8,4} | {4.4.4.4}{4.4.4.4.4.4.4.4} |
sqc7437
|
sqc7438
|
sqc7433
|