h-net: hqc603


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{4,8}
2D vertex symbol {4.4.4.4}{4.4.4.4.4.4.4.4}
Delaney-Dress Symbol <603.2:8:1 2 3 5 6 7 8,2 4 6 8,1 3 4 5 7 8:4 4 4,4 8>
Dual net hqc750

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1787 Fmmm 69 orthorhombic {4,8} 6 (2,5)
Full image sqc7437 Cmma 67 orthorhombic {8,4} 12 (2,8)
Full image sqc7409 I4122 98 tetragonal {4,8} 12 (2,5)
Full image sqc7414 I4122 98 tetragonal {4,8} 12 (2,5)
Full image sqc7438 C2/c 15 monoclinic {8,4,4} 12 (3,9)
Full image sqc7474 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7480 I4122 98 tetragonal {4,8} 12 (2,5)
Full image sqc7481 Fddd 70 orthorhombic {8,4} 12 (2,5)
Full image sqc7526 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7528 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7562 I4122 98 tetragonal {8,4} 12 (2,5)
Full image sqc7735 Fddd 70 orthorhombic {4,8} 12 (2,5)
Full image sqc7746 I4122 98 tetragonal {4,8} 12 (2,5)
Full image sqc76 Pmmm 47 orthorhombic {4,8} 3 (2,5)
Full image sqc1580 P42/mmc 131 tetragonal {4,8} 6 (2,5)
Full image sqc1590 P4222 93 tetragonal {4,8} 6 (2,5)
Full image sqc1643 P4222 93 tetragonal {4,8} 6 (2,5)
Full image sqc1645 P4222 93 tetragonal {4,8} 6 (2,5)
Full image sqc1788 Cmma 67 orthorhombic {8,4} 6 (2,5)
Full image sqc1812 P4222 93 tetragonal {4,8} 6 (2,5)
Full image sqc1864 Cmma 67 orthorhombic {4,8} 6 (2,5)
Full image sqc7433 Imma 74 orthorhombic {8,4} 12 (2,8)

s-nets with edge collapse


Derived U-tilings

11 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC695 *22222a (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc4873 Snet sqc7414 Snet sqc1580
Tiling details UQC696 *22222a (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc5699 Snet sqc7409 Snet sqc1590
Tiling details UQC697 *22222a (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc4886 Snet sqc7746 Snet sqc1643
Tiling details UQC698 *22222b (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc55 Snet sqc7528 Snet sqc1864
Tiling details UQC699 *22222b (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc55 Snet sqc7735 Snet sqc1788
Tiling details UQC700 *22222b (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc1787 Snet sqc7481 Snet sqc55
Tiling details UQC701 *22222b (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc1470 Snet sqc7526 Snet sqc55
Tiling details UQC702 *22222b (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc897 Snet sqc7474 Snet sqc76
Tiling details UQC703 *22222a (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc7078 Snet sqc7480 Snet sqc1645
Tiling details UQC704 *22222a (2,5,3) {4,8} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc6449 Snet sqc7562 Snet sqc1812
Tiling details UQC3207 *222222a (2,8,6) {8,4} {4.4.4.4}{4.4.4.4.4.4.4.4} Snet sqc7437 Snet sqc7438 Snet sqc7433

Symmetry-lowered hyperbolic tilings