h-net: hqc612


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{5,6}
2D vertex symbol {4.3.6.3.4}{3.6.6.3.6.6}
Delaney-Dress Symbol <612.2:8:1 2 3 5 7 8,2 4 5 6 8,1 3 6 7 8:4 3 6,5 6>
Dual net hqc804

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1968 Fmmm 69 orthorhombic {5,6} 6 (2,4)
Full image sqc7942 P4/mmm 123 tetragonal {6,5} 12 (2,4)
Full image sqc7450 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7539 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7571 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7659 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7660 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7828 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7833 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7839 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7874 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7941 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc126 Pmmm 47 orthorhombic {5,6} 3 (2,4)
Full image sqc1692 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1732 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1969 Cmma 67 orthorhombic {6,5} 6 (2,4)
Full image sqc2114 Cmma 67 orthorhombic {5,6} 6 (2,4)
Full image sqc2127 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc14587 P42/mmc 131 tetragonal {5,6} 6 (2,4)
Full image sqc14588 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc14615 Pmmm 47 orthorhombic {5,6} 3 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC733 *22222a (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc7107 Snet sqc7539 Snet sqc1692
Tiling details UQC734 *22222a (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} No s‑net Snet sqc7450 Snet sqc14588
Tiling details UQC735 *22222a (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc7942 Snet sqc7941 Snet sqc2127
Tiling details UQC736 *22222a (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc7317 Snet sqc7659 Snet sqc1732
Tiling details UQC737 *22222b (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc1538 Snet sqc7833 Snet sqc126
Tiling details UQC738 *22222b (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} No s‑net Snet sqc7874 Snet sqc14615
Tiling details UQC739 *22222b (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc126 Snet sqc7660 Snet sqc1969
Tiling details UQC740 *22222b (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc126 Snet sqc7839 Snet sqc2114
Tiling details UQC741 *22222b (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} Snet sqc1968 Snet sqc7828 Snet sqc126
Tiling details UQC742 *22222a (2,4,3) {5,6} {4.3.6.3.4}{3.6.6.3.6.6} No s‑net Snet sqc7571 Snet sqc14587

Symmetry-lowered hyperbolic tilings