h-net: hqc620


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{5,3}
2D vertex symbol {4.6.6.6.4}{6.6.6}
Delaney-Dress Symbol <620.2:8:1 2 3 5 7 8,2 4 5 6 8,1 3 6 7 8:4 6 6,5 3>
Dual net hqc787

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2030 Fmmm 69 orthorhombic {3,5} 8 (2,4)
Full image sqc8020 P4/mmm 123 tetragonal {3,5} 16 (2,4)
Full image sqc7454 I4122 98 tetragonal {3,5} 16 (2,5)
Full image sqc7596 I4122 98 tetragonal {3,5} 16 (2,5)
Full image sqc7689 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7690 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7691 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7696 I4122 98 tetragonal {3,5} 16 (2,5)
Full image sqc7847 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc7848 Fddd 70 orthorhombic {3,5} 16 (2,5)
Full image sqc8018 I4122 98 tetragonal {3,5} 16 (2,5)
Full image sqc8019 I4122 98 tetragonal {3,5} 16 (2,5)
Full image sqc138 Pmmm 47 orthorhombic {5,3} 4 (2,4)
Full image sqc178 Pmmm 47 orthorhombic {5,3} 4 (2,4)
Full image sqc1914 P4222 93 tetragonal {5,3} 8 (2,4)
Full image sqc1922 P4222 93 tetragonal {3,5} 8 (2,4)
Full image sqc2031 Cmma 67 orthorhombic {5,3} 8 (2,4)
Full image sqc2032 Cmma 67 orthorhombic {3,5} 8 (2,4)
Full image sqc2157 P4222 93 tetragonal {5,3} 8 (2,4)
Full image sqc14581 P4222 93 tetragonal {3,5} 8 (2,4)
Full image sqc14582 P4222 93 tetragonal {3,5} 8 (2,4)
Full image sqc14613 Pmmm 47 orthorhombic {5,3} 4 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC784 *22222a (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} No s‑net Snet sqc7454 Snet sqc14582
Tiling details UQC785 *22222a (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc1388 Snet sqc7596 Snet sqc1914
Tiling details UQC786 *22222a (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc6952 Snet sqc7696 Snet sqc1922
Tiling details UQC787 *22222a (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} No s‑net Snet sqc8018 Snet sqc14581
Tiling details UQC788 *22222a (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc8020 Snet sqc8019 Snet sqc2157
Tiling details UQC789 *22222b (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc2030 Snet sqc7691 Snet sqc138
Tiling details UQC790 *22222b (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc138 Snet sqc7848 Snet sqc2032
Tiling details UQC791 *22222b (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc138 Snet sqc7690 Snet sqc2031
Tiling details UQC792 *22222b (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} Snet sqc1425 Snet sqc7689 Snet sqc178
Tiling details UQC793 *22222b (2,4,3) {5,3} {4.6.6.6.4}{6.6.6} No s‑net Snet sqc7847 Snet sqc14613

Symmetry-lowered hyperbolic tilings