Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (3,4,2) |
Vertex degrees | {6,6,4} |
2D vertex symbol | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
Delaney-Dress Symbol | <787.2:8:1 3 5 7 8,2 3 4 6 8,1 4 5 6 7 8:3 5,6 6 4> |
Dual net | hqc620 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc1938 | Fmmm | 69 | orthorhombic | {4,6,6} | 6 | (3,4) | ||
sqc1942 | Fmmm | 69 | orthorhombic | {6,4,6} | 6 | (3,4) | ||
sqc7955 | P4/mmm | 123 | tetragonal | {6,6,4} | 12 | (3,4) | ||
sqc7540 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | ||
sqc7588 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | ||
sqc7610 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | ||
sqc7708 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | ||
sqc7731 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | ||
sqc7769 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | ||
sqc7774 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | ||
sqc7884 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | ||
sqc7885 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | ||
sqc7956 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | ||
sqc171 | Pmmm | 47 | orthorhombic | {6,6,4} | 3 | (3,4) | ||
sqc1855 | Cmma | 67 | orthorhombic | {6,4,6} | 6 | (3,4) | ||
sqc1875 | P4222 | 93 | tetragonal | {4,6,6} | 6 | (3,4) | ||
sqc1935 | P4222 | 93 | tetragonal | {6,6,4} | 6 | (3,4) | ||
sqc1937 | P4222 | 93 | tetragonal | {6,4,6} | 6 | (3,4) | ||
sqc1939 | Cmma | 67 | orthorhombic | {4,6,6} | 6 | (3,4) | ||
sqc1943 | P42/mmc | 131 | tetragonal | {6,6,4} | 6 | (3,4) | ||
sqc1996 | Cmma | 67 | orthorhombic | {6,4,6} | 6 | (3,4) | ||
sqc2100 | P4222 | 93 | tetragonal | {4,6,6} | 6 | (3,4) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3604 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net | sqc7540 | sqc1875 | |
UQC3605 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc7097 | sqc7588 | sqc1935 | |
UQC3606 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc7955 | sqc7956 | sqc1943 | |
UQC3607 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net | sqc7731 | sqc1937 | |
UQC3608 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net | sqc7708 | sqc1996 | |
UQC3609 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc1938 | sqc7774 | sqc171 | |
UQC3610 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc1942 | sqc7884 | sqc171 | |
UQC3611 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc171 | sqc7885 | sqc1939 | |
UQC3612 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc1548 | sqc7769 | sqc1855 | |
UQC3613 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | sqc7098 | sqc7610 | sqc2100 |