h-net: hqc787


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{6,6,4}
2D vertex symbol {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5}
Delaney-Dress Symbol <787.2:8:1 3 5 7 8,2 3 4 6 8,1 4 5 6 7 8:3 5,6 6 4>
Dual net hqc620

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1938 Fmmm 69 orthorhombic {4,6,6} 6 (3,4)
Full image sqc1942 Fmmm 69 orthorhombic {6,4,6} 6 (3,4)
Full image sqc7955 P4/mmm 123 tetragonal {6,6,4} 12 (3,4)
Full image sqc7540 I4122 98 tetragonal {6,6,4} 12 (3,5)
Full image sqc7588 I4122 98 tetragonal {6,6,4} 12 (3,5)
Full image sqc7610 I4122 98 tetragonal {6,6,4} 12 (3,5)
Full image sqc7708 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7731 I4122 98 tetragonal {6,6,4} 12 (3,5)
Full image sqc7769 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7774 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7884 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7885 Fddd 70 orthorhombic {6,6,4} 12 (3,5)
Full image sqc7956 I4122 98 tetragonal {6,6,4} 12 (3,5)
Full image sqc171 Pmmm 47 orthorhombic {6,6,4} 3 (3,4)
Full image sqc1855 Cmma 67 orthorhombic {6,4,6} 6 (3,4)
Full image sqc1875 P4222 93 tetragonal {4,6,6} 6 (3,4)
Full image sqc1935 P4222 93 tetragonal {6,6,4} 6 (3,4)
Full image sqc1937 P4222 93 tetragonal {6,4,6} 6 (3,4)
Full image sqc1939 Cmma 67 orthorhombic {4,6,6} 6 (3,4)
Full image sqc1943 P42/mmc 131 tetragonal {6,6,4} 6 (3,4)
Full image sqc1996 Cmma 67 orthorhombic {6,4,6} 6 (3,4)
Full image sqc2100 P4222 93 tetragonal {4,6,6} 6 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3604 *22222a (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} No s‑net Snet sqc7540 Snet sqc1875
Tiling details UQC3605 *22222a (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc7097 Snet sqc7588 Snet sqc1935
Tiling details UQC3606 *22222a (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc7955 Snet sqc7956 Snet sqc1943
Tiling details UQC3607 *22222a (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} No s‑net Snet sqc7731 Snet sqc1937
Tiling details UQC3608 *22222b (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} No s‑net Snet sqc7708 Snet sqc1996
Tiling details UQC3609 *22222b (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc1938 Snet sqc7774 Snet sqc171
Tiling details UQC3610 *22222b (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc1942 Snet sqc7884 Snet sqc171
Tiling details UQC3611 *22222b (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc171 Snet sqc7885 Snet sqc1939
Tiling details UQC3612 *22222b (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc1548 Snet sqc7769 Snet sqc1855
Tiling details UQC3613 *22222a (3,4,2) {6,6,4} {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} Snet sqc7098 Snet sqc7610 Snet sqc2100

Symmetry-lowered hyperbolic tilings