| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,4,2) |
| Vertex degrees | {6,6,4} |
| 2D vertex symbol | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
| Delaney-Dress Symbol | <787.2:8:1 3 5 7 8,2 3 4 6 8,1 4 5 6 7 8:3 5,6 6 4> |
| Dual net | hqc620 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc1938 | Fmmm | 69 | orthorhombic | {4,6,6} | 6 | (3,4) | |
|
sqc1942 | Fmmm | 69 | orthorhombic | {6,4,6} | 6 | (3,4) | |
|
sqc7955 | P4/mmm | 123 | tetragonal | {6,6,4} | 12 | (3,4) | |
|
sqc7540 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | |
|
sqc7588 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | |
|
sqc7610 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | |
|
sqc7708 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | |
|
sqc7731 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | |
|
sqc7769 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | |
|
sqc7774 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | |
|
sqc7884 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | |
|
sqc7885 | Fddd | 70 | orthorhombic | {6,6,4} | 12 | (3,5) | |
|
sqc7956 | I4122 | 98 | tetragonal | {6,6,4} | 12 | (3,5) | |
|
sqc171 | Pmmm | 47 | orthorhombic | {6,6,4} | 3 | (3,4) | |
|
sqc1855 | Cmma | 67 | orthorhombic | {6,4,6} | 6 | (3,4) | |
|
sqc1875 | P4222 | 93 | tetragonal | {4,6,6} | 6 | (3,4) | |
|
sqc1935 | P4222 | 93 | tetragonal | {6,6,4} | 6 | (3,4) | |
|
sqc1937 | P4222 | 93 | tetragonal | {6,4,6} | 6 | (3,4) | |
|
sqc1939 | Cmma | 67 | orthorhombic | {4,6,6} | 6 | (3,4) | |
|
sqc1943 | P42/mmc | 131 | tetragonal | {6,6,4} | 6 | (3,4) | |
|
sqc1996 | Cmma | 67 | orthorhombic | {6,4,6} | 6 | (3,4) | |
|
sqc2100 | P4222 | 93 | tetragonal | {4,6,6} | 6 | (3,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3604 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net |
sqc7540
|
sqc1875
|
![]() |
UQC3605 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc7097
|
sqc7588
|
sqc1935
|
![]() |
UQC3606 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc7955
|
sqc7956
|
sqc1943
|
![]() |
UQC3607 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net |
sqc7731
|
sqc1937
|
![]() |
UQC3608 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} | No s‑net |
sqc7708
|
sqc1996
|
![]() |
UQC3609 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc1938
|
sqc7774
|
sqc171
|
![]() |
UQC3610 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc1942
|
sqc7884
|
sqc171
|
![]() |
UQC3611 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc171
|
sqc7885
|
sqc1939
|
![]() |
UQC3612 | *22222b | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc1548
|
sqc7769
|
sqc1855
|
![]() |
UQC3613 | *22222a | (3,4,2) | {6,6,4} | {3.5.3.3.5.3}{3.5.5.3.5.5}{5.5.5.5} |
sqc7098
|
sqc7610
|
sqc2100
|