| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,4,3) |
| Vertex degrees | {5,3} |
| 2D vertex symbol | {4.8.4.8.4}{8.8.4} |
| Delaney-Dress Symbol | <674.2:8:1 2 3 5 7 8,2 4 8 6 7,1 3 6 7 8:4 8 4,5 3> |
| Dual net | hqc818 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc2022 | Fmmm | 69 | orthorhombic | {5,3} | 8 | (2,4) | |
|
sqc8005 | P4/mmm | 123 | tetragonal | {3,5} | 16 | (2,4) | |
|
sqc7455 | I4122 | 98 | tetragonal | {3,5} | 16 | (2,5) | |
|
sqc7676 | I4122 | 98 | tetragonal | {3,5} | 16 | (2,5) | |
|
sqc7681 | I4122 | 98 | tetragonal | {3,5} | 16 | (2,5) | |
|
sqc7686 | Fddd | 70 | orthorhombic | {3,5} | 16 | (2,5) | |
|
sqc7688 | Fddd | 70 | orthorhombic | {3,5} | 16 | (2,5) | |
|
sqc7697 | Fddd | 70 | orthorhombic | {3,5} | 16 | (2,5) | |
|
sqc7698 | Fddd | 70 | orthorhombic | {3,5} | 16 | (2,5) | |
|
sqc7700 | Fddd | 70 | orthorhombic | {3,5} | 16 | (2,5) | |
|
sqc8006 | I4122 | 98 | tetragonal | {3,5} | 16 | (2,5) | |
|
sqc8024 | I4122 | 98 | tetragonal | {3,5} | 16 | (2,5) | |
|
sqc153 | Pmmm | 47 | orthorhombic | {5,3} | 4 | (2,4) | |
|
sqc179 | Pmmm | 47 | orthorhombic | {5,3} | 4 | (2,4) | |
|
sqc1748 | P4222 | 93 | tetragonal | {5,3} | 8 | (2,4) | |
|
sqc1920 | P42/mmc | 131 | tetragonal | {3,5} | 8 | (2,4) | |
|
sqc1921 | P4222 | 93 | tetragonal | {3,5} | 8 | (2,4) | |
|
sqc2021 | Cmma | 67 | orthorhombic | {3,5} | 8 | (2,4) | |
|
sqc2033 | Cmma | 67 | orthorhombic | {5,3} | 8 | (2,4) | |
|
sqc2159 | P4222 | 93 | tetragonal | {5,3} | 8 | (2,4) | |
|
sqc2163 | P4222 | 93 | tetragonal | {5,3} | 8 | (2,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC928 | *22222a | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} | No s‑net |
sqc7455
|
sqc1748
|
![]() |
UQC929 | *22222a | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc1429
|
sqc7681
|
sqc1921
|
![]() |
UQC930 | *22222b | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc1436
|
sqc7688
|
sqc179
|
![]() |
UQC931 | *22222a | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} | No s‑net |
sqc8024
|
sqc2159
|
![]() |
UQC932 | *22222b | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc2022
|
sqc7698
|
sqc153
|
![]() |
UQC933 | *22222b | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} | No s‑net |
sqc7700
|
sqc153
|
![]() |
UQC934 | *22222b | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc153
|
sqc7686
|
sqc2033
|
![]() |
UQC935 | *22222b | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc153
|
sqc7697
|
sqc2021
|
![]() |
UQC936 | *22222a | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc8005
|
sqc8006
|
sqc2163
|
![]() |
UQC937 | *22222a | (2,4,3) | {5,3} | {4.8.4.8.4}{8.8.4} |
sqc6867
|
sqc7676
|
sqc1920
|