| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,4,2) |
| Vertex degrees | {6,3,4} |
| 2D vertex symbol | {3.10.3.3.10.3}{3.10.10}{10.10.10.10} |
| Delaney-Dress Symbol | <795.2:8:1 3 5 7 8,2 3 4 6 8,1 4 5 6 7 8:3 10,6 3 4> |
| Dual net | hqc613 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc162 | Pmmm | 47 | orthorhombic | {3,4,6} | 4 | (3,4) | |
|
sqc2084 | Fmmm | 69 | orthorhombic | {3,4,6} | 8 | (3,4) | |
|
sqc7951 | P4/mmm | 123 | tetragonal | {6,3,4} | 16 | (3,4) | |
|
sqc7772 | I4122 | 98 | tetragonal | {6,3,4} | 16 | (3,5) | |
|
sqc7793 | Fddd | 70 | orthorhombic | {6,3,4} | 16 | (3,5) | |
|
sqc7795 | Fddd | 70 | orthorhombic | {6,3,4} | 16 | (3,5) | |
|
sqc7796 | Fddd | 70 | orthorhombic | {6,3,4} | 16 | (3,5) | |
|
sqc7797 | I4122 | 98 | tetragonal | {6,3,4} | 16 | (3,5) | |
|
sqc7887 | Fddd | 70 | orthorhombic | {6,3,4} | 16 | (3,5) | |
|
sqc7888 | I4122 | 98 | tetragonal | {6,3,4} | 16 | (3,5) | |
|
sqc7889 | I4122 | 98 | tetragonal | {6,3,4} | 16 | (3,5) | |
|
sqc7890 | Fddd | 70 | orthorhombic | {6,3,4} | 16 | (3,5) | |
|
sqc7952 | I4122 | 98 | tetragonal | {6,3,4} | 16 | (3,5) | |
|
sqc1759 | P4222 | 93 | tetragonal | {3,6,4} | 8 | (3,4) | |
|
sqc1762 | P4222 | 93 | tetragonal | {4,3,6} | 8 | (3,4) | |
|
sqc2086 | Cmma | 67 | orthorhombic | {3,4,6} | 8 | (3,4) | |
|
sqc2091 | P42/mmc | 131 | tetragonal | {3,4,6} | 8 | (3,4) | |
|
sqc2135 | P42/mmc | 131 | tetragonal | {3,4,6} | 8 | (3,4) | |
|
sqc2136 | P42/mcm | 132 | tetragonal | {3,4,6} | 8 | (3,4) | |
|
sqc2143 | Cmma | 67 | orthorhombic | {3,4,6} | 8 | (3,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3633 | *22222a | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... | No s‑net |
sqc7889
|
sqc1762
|
![]() |
UQC3634 | *22222a | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc7188
|
sqc7772
|
sqc1759
|
![]() |
UQC3635 | *22222a | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... | No s‑net |
sqc7888
|
sqc2091
|
![]() |
UQC3636 | *22222a | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc7951
|
sqc7952
|
sqc2136
|
![]() |
UQC3637 | *22222b | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc162
|
sqc7887
|
sqc2143
|
![]() |
UQC3638 | *22222b | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc162
|
sqc7796
|
sqc2086
|
![]() |
UQC3639 | *22222b | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc2084
|
sqc7793
|
sqc162
|
![]() |
UQC3640 | *22222b | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... | No s‑net |
sqc7890
|
sqc162
|
![]() |
UQC3641 | *22222a | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc7278
|
sqc7797
|
sqc2135
|
![]() |
UQC3642 | *22222b | (3,4,2) | {6,3,4} | {3.10.3.3.10.3}{3.10.10}{10.10.1... |
sqc1554
|
sqc7795
|
sqc162
|