h-net: hqc795


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{6,3,4}
2D vertex symbol {3.10.3.3.10.3}{3.10.10}{10.10.10.10}
Delaney-Dress Symbol <795.2:8:1 3 5 7 8,2 3 4 6 8,1 4 5 6 7 8:3 10,6 3 4>
Dual net hqc613

Derived s-nets

s-nets with faithful topology

20 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc162 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
Full image sqc2084 Fmmm 69 orthorhombic {3,4,6} 8 (3,4)
Full image sqc7951 P4/mmm 123 tetragonal {6,3,4} 16 (3,4)
Full image sqc7772 I4122 98 tetragonal {6,3,4} 16 (3,5)
Full image sqc7793 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7795 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7796 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7797 I4122 98 tetragonal {6,3,4} 16 (3,5)
Full image sqc7887 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7888 I4122 98 tetragonal {6,3,4} 16 (3,5)
Full image sqc7889 I4122 98 tetragonal {6,3,4} 16 (3,5)
Full image sqc7890 Fddd 70 orthorhombic {6,3,4} 16 (3,5)
Full image sqc7952 I4122 98 tetragonal {6,3,4} 16 (3,5)
Full image sqc1759 P4222 93 tetragonal {3,6,4} 8 (3,4)
Full image sqc1762 P4222 93 tetragonal {4,3,6} 8 (3,4)
Full image sqc2086 Cmma 67 orthorhombic {3,4,6} 8 (3,4)
Full image sqc2091 P42/mmc 131 tetragonal {3,4,6} 8 (3,4)
Full image sqc2135 P42/mmc 131 tetragonal {3,4,6} 8 (3,4)
Full image sqc2136 P42/mcm 132 tetragonal {3,4,6} 8 (3,4)
Full image sqc2143 Cmma 67 orthorhombic {3,4,6} 8 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3633 *22222a (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... No s‑net Snet sqc7889 Snet sqc1762
Tiling details UQC3634 *22222a (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc7188 Snet sqc7772 Snet sqc1759
Tiling details UQC3635 *22222a (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... No s‑net Snet sqc7888 Snet sqc2091
Tiling details UQC3636 *22222a (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc7951 Snet sqc7952 Snet sqc2136
Tiling details UQC3637 *22222b (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc162 Snet sqc7887 Snet sqc2143
Tiling details UQC3638 *22222b (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc162 Snet sqc7796 Snet sqc2086
Tiling details UQC3639 *22222b (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc2084 Snet sqc7793 Snet sqc162
Tiling details UQC3640 *22222b (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... No s‑net Snet sqc7890 Snet sqc162
Tiling details UQC3641 *22222a (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc7278 Snet sqc7797 Snet sqc2135
Tiling details UQC3642 *22222b (3,4,2) {6,3,4} {3.10.3.3.10.3}{3.10.10}{10.10.1... Snet sqc1554 Snet sqc7795 Snet sqc162

Symmetry-lowered hyperbolic tilings