h-net: hqc921


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,4)
Vertex degrees{7,4}
2D vertex symbol {4.4.3.4.3.4.4}{3.4.3.4}
Delaney-Dress Symbol <921.2:9:1 2 3 4 5 7 9,2 4 6 7 8 9,1 3 5 8 9:4 4 3 4,7 4>
Dual net hqc1230

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2687 Fmmm 69 orthorhombic {7,4} 6 (2,4)
Full image sqc8849 P4/mmm 123 tetragonal {7,4} 12 (2,4)
Full image sqc8412 I4122 98 tetragonal {7,4} 12 (2,5)
Full image sqc8429 I4122 98 tetragonal {7,4} 12 (2,5)
Full image sqc8578 I4122 98 tetragonal {7,4} 12 (2,5)
Full image sqc8634 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8635 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8640 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8656 I4122 98 tetragonal {7,4} 12 (2,5)
Full image sqc8852 I4122 98 tetragonal {7,4} 12 (2,5)
Full image sqc8853 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc8854 Fddd 70 orthorhombic {7,4} 12 (2,5)
Full image sqc230 Pmmm 47 orthorhombic {7,4} 3 (2,4)
Full image sqc238 Pmmm 47 orthorhombic {7,4} 3 (2,4)
Full image sqc255 Pmmm 47 orthorhombic {7,4} 3 (2,4)
Full image sqc2364 P4222 93 tetragonal {7,4} 6 (2,4)
Full image sqc2414 P4222 93 tetragonal {7,4} 6 (2,4)
Full image sqc2645 P4222 93 tetragonal {7,4} 6 (2,4)
Full image sqc2671 P4222 93 tetragonal {7,4} 6 (2,4)
Full image sqc2688 Cmma 67 orthorhombic {7,4} 6 (2,4)
Full image sqc2742 Cmma 67 orthorhombic {7,4} 6 (2,4)
Full image sqc2902 P4222 93 tetragonal {7,4} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1426 *22222a (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} No s‑net Snet sqc8429 Snet sqc2414
Tiling details UQC1427 *22222a (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc1714 Snet sqc8412 Snet sqc2364
Tiling details UQC1428 *22222b (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc2687 Snet sqc8854 Snet sqc230
Tiling details UQC1429 *22222b (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc230 Snet sqc8635 Snet sqc2688
Tiling details UQC1430 *22222a (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc8849 Snet sqc8852 Snet sqc2902
Tiling details UQC1431 *22222a (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc7958 Snet sqc8656 Snet sqc2671
Tiling details UQC1432 *22222b (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} No s‑net Snet sqc8640 Snet sqc255
Tiling details UQC1433 *22222b (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc230 Snet sqc8853 Snet sqc2742
Tiling details UQC1434 *22222a (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} No s‑net Snet sqc8578 Snet sqc2645
Tiling details UQC1435 *22222b (2,4,4) {7,4} {4.4.3.4.3.4.4}{3.4.3.4} Snet sqc1881 Snet sqc8634 Snet sqc238

Symmetry-lowered hyperbolic tilings