h-net: hqc1483


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,5,2)
Vertex degrees{4,4,4,4}
2D vertex symbol {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.7.7}
Delaney-Dress Symbol <1483.2:10:1 3 5 7 9 10,2 3 6 5 8 10,1 4 5 6 7 8 9 10:3 7,4 4 4 4>
Dual net hqc1308

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc3654 Fmmm 69 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3826 Fmmm 69 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc9815 P4/mmm 123 tetragonal {4,4,4,4} 20 (4,5)
Full image sqc9564 I4122 98 tetragonal {4,4,4,4} 20 (4,6)
Full image sqc9565 Fddd 70 orthorhombic {4,4,4,4} 20 (4,6)
Full image sqc9591 I4122 98 tetragonal {4,4,4,4} 20 (4,6)
Full image sqc9601 Fddd 70 orthorhombic {4,4,4,4} 20 (4,6)
Full image sqc9608 Fddd 70 orthorhombic {4,4,4,4} 20 (4,6)
Full image sqc9615 I4122 98 tetragonal {4,4,4,4} 20 (4,6)
Full image sqc9805 I4122 98 tetragonal {4,4,4,4} 20 (4,6)
Full image sqc9813 Fddd 70 orthorhombic {4,4,4,4} 20 (4,6)
Full image sqc9814 I4122 98 tetragonal {4,4,4,4} 20 (4,6)
Full image sqc9821 Fddd 70 orthorhombic {4,4,4,4} 20 (4,6)
Full image sqc446 Pmmm 47 orthorhombic {4,4,4,4} 5 (4,5)
Full image sqc3094 P4222 93 tetragonal {4,4,4,4} 10 (4,5)
Full image sqc3189 P4222 93 tetragonal {4,4,4,4} 10 (4,5)
Full image sqc3542 P4222 93 tetragonal {4,4,4,4} 10 (4,5)
Full image sqc3720 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3821 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)
Full image sqc3823 P42/mmc 131 tetragonal {4,4,4,4} 10 (4,5)
Full image sqc3824 P4222 93 tetragonal {4,4,4,4} 10 (4,5)
Full image sqc3825 Cmma 67 orthorhombic {4,4,4,4} 10 (4,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4552 *22222a (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... No s‑net Snet sqc9805 Snet sqc3094
Tiling details UQC4553 *22222a (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc9292 Snet sqc9564 Snet sqc3189
Tiling details UQC4554 *22222b (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... No s‑net Snet sqc9565 Snet sqc3720
Tiling details UQC4555 *22222b (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc3087 Snet sqc9601 Snet sqc3821
Tiling details UQC4556 *22222b (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc3826 Snet sqc9813 Snet sqc446
Tiling details UQC4557 *22222b (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc446 Snet sqc9821 Snet sqc3825
Tiling details UQC4558 *22222b (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc3654 Snet sqc9608 Snet sqc446
Tiling details UQC4559 *22222a (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... No s‑net Snet sqc9591 Snet sqc3542
Tiling details UQC4560 *22222a (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc9290 Snet sqc9615 Snet sqc3824
Tiling details UQC4561 *22222a (4,5,2) {4,4,4,4} {3.7.7.3}{3.7.3.7}{7.7.7.7}{7.7.... Snet sqc9815 Snet sqc9814 Snet sqc3823

Symmetry-lowered hyperbolic tilings