h-net: hqc2144


Topological data

Orbifold symbol*222222
Transitivity (vertex, edge, ring)(2,7,5)
Vertex degrees{10,3}
2D vertex symbol {4.4.4.4.3.3.4.4.4.4}{4.4.3}
Delaney-Dress Symbol <2144.2:13:1 2 3 4 5 6 7 9 11 12 13,2 4 6 8 13 12 11,1 3 5 7 10 11 12 13:4 4 4 4 3,10 3>
Dual net hqc2200

Derived s-nets

s-nets with faithful topology

7 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc991 Pmmm 47 orthorhombic {3,10} 4 (2,7)
Full image sqc994 Pmmm 47 orthorhombic {10,3} 4 (2,7)
Full image sqc5629 C2/c 15 monoclinic {10,3} 8 (2,8)
Full image sqc5631 I212121 24 orthorhombic {10,3} 8 (2,8)
Full image sqc5713 C2/c 15 monoclinic {10,3} 8 (2,8)
Full image sqc5725 C2/c 15 monoclinic {10,3} 8 (2,8)
Full image sqc1084 P222 16 orthorhombic {10,3} 4 (2,7)

s-nets with edge collapse


Derived U-tilings

4 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2738 *222222a (2,7,5) {10,3} {4.4.4.4.3.3.4.4.4.4}{4.4.3} Snet sqc994 Snet sqc5629 Snet sqc4824
Tiling details UQC2739 *222222b (2,7,5) {10,3} {4.4.4.4.3.3.4.4.4.4}{4.4.3} No s‑net Snet sqc5631 Snet sqc1084
Tiling details UQC2740 *222222a (2,7,5) {10,3} {4.4.4.4.3.3.4.4.4.4}{4.4.3} Snet sqc5022 Snet sqc5725 Snet sqc580
Tiling details UQC2741 *222222a (2,7,5) {10,3} {4.4.4.4.3.3.4.4.4.4}{4.4.3} Snet sqc991 Snet sqc5713 Snet sqc735

Symmetry-lowered hyperbolic tilings