h-net: hqc644


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{6,4}
2D vertex symbol {4.6.3.3.6.4}{6.3.6.3}
Delaney-Dress Symbol <644.2:8:1 2 3 5 7 8,2 4 5 8 7,1 3 6 7 8:4 6 3,6 4>
Dual net hqc825

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1885 Fmmm 69 orthorhombic {4,6} 6 (2,4)
Full image sqc7894 P4/mmm 123 tetragonal {6,4} 12 (2,4)
Full image sqc7448 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7564 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7590 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7647 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7651 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7657 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7662 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7830 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7834 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7957 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc123 Pmmm 47 orthorhombic {4,6} 3 (2,4)
Full image sqc175 Pmmm 47 orthorhombic {4,6} 3 (2,4)
Full image sqc1719 P4222 93 tetragonal {6,4} 6 (2,4)
Full image sqc1879 P42/mmc 131 tetragonal {4,6} 6 (2,4)
Full image sqc1884 Cmma 67 orthorhombic {4,6} 6 (2,4)
Full image sqc1911 P4222 93 tetragonal {6,4} 6 (2,4)
Full image sqc1953 P4222 93 tetragonal {4,6} 6 (2,4)
Full image sqc2012 Cmma 67 orthorhombic {6,4} 6 (2,4)
Full image sqc2130 P4222 93 tetragonal {4,6} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC854 *22222a (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} No s‑net Snet sqc7448 Snet sqc1719
Tiling details UQC855 *22222a (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc1361 Snet sqc7590 Snet sqc1911
Tiling details UQC856 *22222a (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc6697 Snet sqc7564 Snet sqc1879
Tiling details UQC857 *22222b (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc1416 Snet sqc7647 Snet sqc175
Tiling details UQC858 *22222a (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc7894 Snet sqc7834 Snet sqc2130
Tiling details UQC859 *22222b (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} No s‑net Snet sqc7830 Snet sqc123
Tiling details UQC860 *22222b (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc1885 Snet sqc7662 Snet sqc123
Tiling details UQC861 *22222b (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc123 Snet sqc7651 Snet sqc2012
Tiling details UQC862 *22222b (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} Snet sqc123 Snet sqc7657 Snet sqc1884
Tiling details UQC863 *22222a (2,4,3) {6,4} {4.6.3.3.6.4}{6.3.6.3} No s‑net Snet sqc7957 Snet sqc1953

Symmetry-lowered hyperbolic tilings