| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,4,3) |
| Vertex degrees | {6,4} |
| 2D vertex symbol | {4.6.3.3.6.4}{6.3.6.3} |
| Delaney-Dress Symbol | <644.2:8:1 2 3 5 7 8,2 4 5 8 7,1 3 6 7 8:4 6 3,6 4> |
| Dual net | hqc825 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc1885 | Fmmm | 69 | orthorhombic | {4,6} | 6 | (2,4) | |
|
sqc7894 | P4/mmm | 123 | tetragonal | {6,4} | 12 | (2,4) | |
|
sqc7448 | I4122 | 98 | tetragonal | {6,4} | 12 | (2,5) | |
|
sqc7564 | I4122 | 98 | tetragonal | {6,4} | 12 | (2,5) | |
|
sqc7590 | I4122 | 98 | tetragonal | {6,4} | 12 | (2,5) | |
|
sqc7647 | Fddd | 70 | orthorhombic | {6,4} | 12 | (2,5) | |
|
sqc7651 | Fddd | 70 | orthorhombic | {6,4} | 12 | (2,5) | |
|
sqc7657 | Fddd | 70 | orthorhombic | {6,4} | 12 | (2,5) | |
|
sqc7662 | Fddd | 70 | orthorhombic | {6,4} | 12 | (2,5) | |
|
sqc7830 | Fddd | 70 | orthorhombic | {6,4} | 12 | (2,5) | |
|
sqc7834 | I4122 | 98 | tetragonal | {6,4} | 12 | (2,5) | |
|
sqc7957 | I4122 | 98 | tetragonal | {6,4} | 12 | (2,5) | |
|
sqc123 | Pmmm | 47 | orthorhombic | {4,6} | 3 | (2,4) | |
|
sqc175 | Pmmm | 47 | orthorhombic | {4,6} | 3 | (2,4) | |
|
sqc1719 | P4222 | 93 | tetragonal | {6,4} | 6 | (2,4) | |
|
sqc1879 | P42/mmc | 131 | tetragonal | {4,6} | 6 | (2,4) | |
|
sqc1884 | Cmma | 67 | orthorhombic | {4,6} | 6 | (2,4) | |
|
sqc1911 | P4222 | 93 | tetragonal | {6,4} | 6 | (2,4) | |
|
sqc1953 | P4222 | 93 | tetragonal | {4,6} | 6 | (2,4) | |
|
sqc2012 | Cmma | 67 | orthorhombic | {6,4} | 6 | (2,4) | |
|
sqc2130 | P4222 | 93 | tetragonal | {4,6} | 6 | (2,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC854 | *22222a | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} | No s‑net |
sqc7448
|
sqc1719
|
![]() |
UQC855 | *22222a | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc1361
|
sqc7590
|
sqc1911
|
![]() |
UQC856 | *22222a | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc6697
|
sqc7564
|
sqc1879
|
![]() |
UQC857 | *22222b | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc1416
|
sqc7647
|
sqc175
|
![]() |
UQC858 | *22222a | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc7894
|
sqc7834
|
sqc2130
|
![]() |
UQC859 | *22222b | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} | No s‑net |
sqc7830
|
sqc123
|
![]() |
UQC860 | *22222b | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc1885
|
sqc7662
|
sqc123
|
![]() |
UQC861 | *22222b | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc123
|
sqc7651
|
sqc2012
|
![]() |
UQC862 | *22222b | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} |
sqc123
|
sqc7657
|
sqc1884
|
![]() |
UQC863 | *22222a | (2,4,3) | {6,4} | {4.6.3.3.6.4}{6.3.6.3} | No s‑net |
sqc7957
|
sqc1953
|