h-net: hqc832


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{4,3,3}
2D vertex symbol {12.12.12.12}{12.4.12}{12.12.4}
Delaney-Dress Symbol <832.2:8:1 3 5 7 8,2 4 8 6 7,1 2 3 6 7 8:12 4,4 3 3>
Dual net hqc641

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2090 Fmmm 69 orthorhombic {3,3,4} 10 (3,4)
Full image sqc8146 P4/mmm 123 tetragonal {4,3,3} 20 (3,4)
Full image sqc7460 I4122 98 tetragonal {4,3,3} 20 (3,5)
Full image sqc7798 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7799 I4122 98 tetragonal {4,3,3} 20 (3,5)
Full image sqc7800 I4122 98 tetragonal {4,3,3} 20 (3,5)
Full image sqc7807 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7808 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7809 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc7854 Fddd 70 orthorhombic {4,3,3} 20 (3,5)
Full image sqc8128 I4122 98 tetragonal {4,3,3} 20 (3,5)
Full image sqc8144 I4122 98 tetragonal {4,3,3} 20 (3,5)
Full image sqc164 Pmmm 47 orthorhombic {3,3,4} 5 (3,4)
Full image sqc1770 P42/mmc 131 tetragonal {3,4,3} 10 (3,4)
Full image sqc1771 P4222 93 tetragonal {3,3,4} 10 (3,4)
Full image sqc1772 P4222 93 tetragonal {3,4,3} 10 (3,4)
Full image sqc2082 P42/mmc 131 tetragonal {3,3,4} 10 (3,4)
Full image sqc2089 Cmma 67 orthorhombic {3,3,4} 10 (3,4)
Full image sqc2109 Cmma 67 orthorhombic {3,3,4} 10 (3,4)
Full image sqc2211 P42/mcm 132 tetragonal {3,3,4} 10 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3786 *22222a (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} No s‑net Snet sqc7460 Snet sqc1772
Tiling details UQC3787 *22222a (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc7392 Snet sqc7800 Snet sqc1771
Tiling details UQC3788 *22222b (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc2090 Snet sqc7807 Snet sqc164
Tiling details UQC3789 *22222b (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc164 Snet sqc7854 Snet sqc2089
Tiling details UQC3790 *22222b (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} No s‑net Snet sqc7809 Snet sqc164
Tiling details UQC3791 *22222a (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} No s‑net Snet sqc8144 Snet sqc2082
Tiling details UQC3792 *22222b (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc1576 Snet sqc7808 Snet sqc164
Tiling details UQC3793 *22222b (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc164 Snet sqc7798 Snet sqc2109
Tiling details UQC3794 *22222a (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc8146 Snet sqc8128 Snet sqc2211
Tiling details UQC3795 *22222a (3,4,2) {4,3,3} {12.12.12.12}{12.4.12}{12.12.4} Snet sqc7393 Snet sqc7799 Snet sqc1770

Symmetry-lowered hyperbolic tilings