| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,4,2) |
| Vertex degrees | {4,3,3} |
| 2D vertex symbol | {12.12.12.12}{12.4.12}{12.12.4} |
| Delaney-Dress Symbol | <832.2:8:1 3 5 7 8,2 4 8 6 7,1 2 3 6 7 8:12 4,4 3 3> |
| Dual net | hqc641 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc2090 | Fmmm | 69 | orthorhombic | {3,3,4} | 10 | (3,4) | |
|
sqc8146 | P4/mmm | 123 | tetragonal | {4,3,3} | 20 | (3,4) | |
|
sqc7460 | I4122 | 98 | tetragonal | {4,3,3} | 20 | (3,5) | |
|
sqc7798 | Fddd | 70 | orthorhombic | {4,3,3} | 20 | (3,5) | |
|
sqc7799 | I4122 | 98 | tetragonal | {4,3,3} | 20 | (3,5) | |
|
sqc7800 | I4122 | 98 | tetragonal | {4,3,3} | 20 | (3,5) | |
|
sqc7807 | Fddd | 70 | orthorhombic | {4,3,3} | 20 | (3,5) | |
|
sqc7808 | Fddd | 70 | orthorhombic | {4,3,3} | 20 | (3,5) | |
|
sqc7809 | Fddd | 70 | orthorhombic | {4,3,3} | 20 | (3,5) | |
|
sqc7854 | Fddd | 70 | orthorhombic | {4,3,3} | 20 | (3,5) | |
|
sqc8128 | I4122 | 98 | tetragonal | {4,3,3} | 20 | (3,5) | |
|
sqc8144 | I4122 | 98 | tetragonal | {4,3,3} | 20 | (3,5) | |
|
sqc164 | Pmmm | 47 | orthorhombic | {3,3,4} | 5 | (3,4) | |
|
sqc1770 | P42/mmc | 131 | tetragonal | {3,4,3} | 10 | (3,4) | |
|
sqc1771 | P4222 | 93 | tetragonal | {3,3,4} | 10 | (3,4) | |
|
sqc1772 | P4222 | 93 | tetragonal | {3,4,3} | 10 | (3,4) | |
|
sqc2082 | P42/mmc | 131 | tetragonal | {3,3,4} | 10 | (3,4) | |
|
sqc2089 | Cmma | 67 | orthorhombic | {3,3,4} | 10 | (3,4) | |
|
sqc2109 | Cmma | 67 | orthorhombic | {3,3,4} | 10 | (3,4) | |
|
sqc2211 | P42/mcm | 132 | tetragonal | {3,3,4} | 10 | (3,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3786 | *22222a | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} | No s‑net |
sqc7460
|
sqc1772
|
![]() |
UQC3787 | *22222a | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc7392
|
sqc7800
|
sqc1771
|
![]() |
UQC3788 | *22222b | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc2090
|
sqc7807
|
sqc164
|
![]() |
UQC3789 | *22222b | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc164
|
sqc7854
|
sqc2089
|
![]() |
UQC3790 | *22222b | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} | No s‑net |
sqc7809
|
sqc164
|
![]() |
UQC3791 | *22222a | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} | No s‑net |
sqc8144
|
sqc2082
|
![]() |
UQC3792 | *22222b | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc1576
|
sqc7808
|
sqc164
|
![]() |
UQC3793 | *22222b | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc164
|
sqc7798
|
sqc2109
|
![]() |
UQC3794 | *22222a | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc8146
|
sqc8128
|
sqc2211
|
![]() |
UQC3795 | *22222a | (3,4,2) | {4,3,3} | {12.12.12.12}{12.4.12}{12.12.4} |
sqc7393
|
sqc7799
|
sqc1770
|