s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc12000 I41/acd 142 tetragonal {4,4,4} 28 (3,4)
Full image sqc12001 P42/mmc 131 tetragonal {3,4} 32 (2,6)
Full image sqc12002 I4/mmm 139 tetragonal {4,3} 32 (2,6)
Full image sqc12003 I41/amd 141 tetragonal {3,4} 32 (2,6)
Full image sqc12004 P4/mmm 123 tetragonal {3,3,4,4,4,4} 32 (6,6)
Full image sqc12005 P42/nnm 134 tetragonal {3,4,4,4,4,4} 30 (6,6)
Full image sqc12006 I4/mmm 139 tetragonal {3,4,4,4,4,4} 30 (6,6)
Full image sqc12007 I4/mmm 139 tetragonal {3,4} 32 (2,6)
Full image sqc12008 I41/acd 142 tetragonal {4,4,4} 28 (3,4)
Full image sqc12009 Fddd 70 orthorhombic {3,3,4,4} 32 (4,7)
Full image sqc12010 Fddd 70 orthorhombic {3,3,4,4} 32 (4,7)
Full image sqc12011 I41/a 88 tetragonal {3,3,4,4} 32 (4,7)
Full image sqc12012 P4/nmm 129 tetragonal {3,4} 32 (2,6)
Full image sqc12013 I41/acd 142 tetragonal {4,4,4} 28 (3,4)
Full image sqc12014 I4122 98 tetragonal {3,3,4,4} 32 (4,7)
Full image sqc12015 P4/mmm 123 tetragonal {3,4} 32 (2,6)
Full image sqc12016 I4/mmm 139 tetragonal {4,4,4,3,4,4} 30 (6,6)
Full image sqc12017 P42/nnm 134 tetragonal {4,4,3,4,4,4} 30 (6,6)
Full image sqc12018 I4/mmm 139 tetragonal {4,3} 32 (2,6)
Full image sqc12019 I4/mmm 139 tetragonal {4,3} 32 (2,6)
Full image sqc12020 P42/mmc 131 tetragonal {3,4} 32 (2,6)
Full image sqc12021 I-42d 122 tetragonal {3,3,4,4} 32 (4,7)
Full image sqc12022 P42/mmc 131 tetragonal {3,4} 32 (2,6)
Full image sqc12023 I4/mmm 139 tetragonal {3,4} 32 (2,6)
Full image sqc12024 P42/nnm 134 tetragonal {4,3} 32 (2,6)
Full image sqc12025 I4/mmm 139 tetragonal {3,4} 32 (2,6)
Full image sqc12026 I41/a 88 tetragonal {3,3,4,4} 32 (4,7)
Full image sqc12027 P42/nnm 134 tetragonal {3,4} 32 (2,6)
Full image sqc12028 P4/nmm 129 tetragonal {3,4} 32 (2,6)
Full image sqc12029 I4/mmm 139 tetragonal {3,4} 32 (2,6)
Full image sqc12030 I41/acd 142 tetragonal {3,4} 32 (2,4)
Full image sqc12031 I41/acd 142 tetragonal {3,4} 32 (2,4)
Full image sqc12032 I41/acd 142 tetragonal {3,4} 32 (2,4)
Full image sqc12033 I41/acd 142 tetragonal {3,4} 32 (2,5)
Full image sqc12034 I41/acd 142 tetragonal {3,4} 32 (2,5)
Full image sqc12035 I41/acd 142 tetragonal {4,3,4} 32 (3,4)
Full image sqc12036 P42/nnm 134 tetragonal {4,3} 32 (2,6)
Full image sqc12037 I41/acd 142 tetragonal {4,3,4} 32 (3,4)
Full image sqc12038 I41/amd 141 tetragonal {3,4} 32 (2,6)
Full image sqc12039 I41/acd 142 tetragonal {3,3,4} 36 (3,4)
Full image sqc12040 I41/acd 142 tetragonal {3,3,4} 36 (3,4)
Full image sqc12041 I41/acd 142 tetragonal {3,3,4} 36 (3,4)
Full image sqc12042 I41/acd 142 tetragonal {3,3,4} 36 (3,4)
Full image sqc12043 P4/mmm 123 tetragonal {3,4,3,4,4,4} 32 (6,7)
Full image sqc12044 P4/mmm 123 tetragonal {3,4,3,4,4,4} 32 (6,7)
Full image sqc12045 P4/mmm 123 tetragonal {3,4,4,3,4,4} 32 (6,7)
Full image sqc12046 P4/mmm 123 tetragonal {3,4,4,3,4,4} 32 (6,7)
Full image sqc12047 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12048 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12049 I4122 98 tetragonal {5,5,5} 24 (3,8)
Full image sqc12050 F-43m 216 cubic {4,12} 18 (2,4)
Full image sqc12051 P-43m 215 cubic {3,16} 27 (2,4)
Full image sqc12052 Pm-3m 221 cubic {3,16} 27 (2,4)
Full image sqc12053 Im-3m 229 cubic {12,3} 28 (2,3)
Full image sqc12054 Fd-3m 227 cubic {12,3} 28 (2,3)
Full image sqc12055 Ia-3 206 cubic {12,3} 28 (2,3)
Full image sqc12056 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12057 I213 199 cubic {4,12} 18 (2,5)
Full image sqc12058 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12059 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12060 P4/mmm 123 tetragonal {7,4} 24 (2,7)
Full image sqc12061 P4232 208 cubic {4,12} 18 (2,4)
Full image sqc12062 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12063 Fddd 70 orthorhombic {7,4,4} 24 (3,8)
Full image sqc12064 I4122 98 tetragonal {7,4,4} 24 (3,8)
Full image sqc12065 I4122 98 tetragonal {3,6,6} 24 (3,8)
Full image sqc12066 I4122 98 tetragonal {3,6,6} 24 (3,8)
Full image sqc12067 I4122 98 tetragonal {3,6,6} 24 (3,8)
Full image sqc12068 I4122 98 tetragonal {3,6,6} 24 (3,8)
Full image sqc12069 I4122 98 tetragonal {3,6,6} 24 (3,8)
Full image sqc12070 I4122 98 tetragonal {5,5,5} 24 (3,8)
Full image sqc12071 I4122 98 tetragonal {5,5,5} 24 (3,8)
Full image sqc12072 Fddd 70 orthorhombic {5,5,5} 24 (3,8)
Full image sqc12073 Fddd 70 orthorhombic {5,5,5} 24 (3,8)
Full image sqc12074 Fddd 70 orthorhombic {5,5,5} 24 (3,8)
Full image sqc12075 Fddd 70 orthorhombic {5,5,5} 24 (3,8)
Full image sqc12076 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12077 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12078 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12079 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12080 Fddd 70 orthorhombic {4,4,4,3,4,4} 32 (6,8)
Full image sqc12081 Fddd 70 orthorhombic {4,4,3,4,4,4} 32 (6,8)
Full image sqc12082 Fddd 70 orthorhombic {4,4,3,4,4,4} 32 (6,8)
Full image sqc12083 I4122 98 tetragonal {4,4,3,4,4,4} 32 (6,8)
Full image sqc12084 I4122 98 tetragonal {4,4,3,4,4,4} 32 (6,8)
Full image sqc12085 P4232 208 cubic {3,4,3,4} 34 (4,5)
Full image sqc12086 P4232 208 cubic {4,4,3,3} 34 (4,5)
Full image sqc12087 Fddd 70 orthorhombic {4,4,3,4,4,4} 32 (6,8)
Full image sqc12088 I4122 98 tetragonal {4,4,4,3,4,4} 32 (6,8)
Full image sqc12089 I4122 98 tetragonal {4,3,4,4,4,4} 32 (6,8)
Full image sqc12090 P4232 208 cubic {4,3,3,4} 34 (4,5)
Full image sqc12091 P4/mmm 123 tetragonal {4,3,4,4,4,4} 32 (6,7)
Full image sqc12092 I4122 98 tetragonal {4,3,4,4,4,4} 32 (6,8)
Full image sqc12093 P4/mmm 123 tetragonal {4,3,4,4,4,4} 32 (6,7)
Full image sqc12094 P4232 208 cubic {3,4,3,4} 34 (4,5)
Full image sqc12095 I4122 98 tetragonal {4,3,4,4,4,4} 32 (6,8)
Full image sqc12096 P4/mmm 123 tetragonal {4,3,4,4,4,4} 32 (6,7)
Full image sqc12097 P4232 208 cubic {3,3,6,4} 34 (4,5)
Full image sqc12098 P4232 208 cubic {4,3,3,4} 34 (4,5)
Full image sqc12099 P4232 208 cubic {3,4,4,3} 34 (4,5)