s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc12900 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12901 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12902 P4232 208 cubic {7,3} 36 (2,6)
Full image sqc12903 F-43m 216 cubic {6,4,4,3,6} 38 (5,6)
Full image sqc12904 F-43m 216 cubic {6,4,4,4,3} 38 (5,6)
Full image sqc12905 F-43m 216 cubic {6,4,3,4,6} 38 (5,6)
Full image sqc12906 F-43m 216 cubic {4,4,6,4,3} 38 (5,6)
Full image sqc12907 I213 199 cubic {4,4,6,4,3} 38 (5,7)
Full image sqc12908 I213 199 cubic {6,4,4,3,6} 38 (5,7)
Full image sqc12909 I213 199 cubic {6,4,4,4,3} 38 (5,7)
Full image sqc12910 I213 199 cubic {6,4,3,4,6} 38 (5,7)
Full image sqc12911 P4232 208 cubic {6,4,4,3,6} 38 (5,6)
Full image sqc12912 P4232 208 cubic {6,4,4,4,3} 38 (5,6)
Full image sqc12913 P4232 208 cubic {4,3,4,4,6} 40 (5,6)
Full image sqc12914 P4232 208 cubic {6,4,3,4,6} 38 (5,6)
Full image sqc12915 F-43m 216 cubic {4,4,6,4,3} 38 (5,6)
Full image sqc12916 I213 199 cubic {4,4,6,4,3} 38 (5,7)
Full image sqc12917 P4232 208 cubic {4,4,6,4,3} 38 (5,6)
Full image sqc12918 I213 199 cubic {4,3,6,4,6} 38 (5,7)
Full image sqc12919 F-43m 216 cubic {4,3,6,4,6} 38 (5,6)
Full image sqc12920 P4232 208 cubic {4,3,6,4,6} 38 (5,6)
Full image sqc12921 P4232 208 cubic {3,4,6,4,4} 40 (5,6)
Full image sqc12922 P4232 208 cubic {3,4,4,4,6} 40 (5,6)
Full image sqc12923 P4232 208 cubic {3,4,4,6,4} 40 (5,6)
Full image sqc12924 F-43m 216 cubic {5,4} 36 (2,6)
Full image sqc12925 F-43m 216 cubic {5,4} 36 (2,6)
Full image sqc12926 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12927 P4232 208 cubic {4,5} 36 (2,6)
Full image sqc12928 I213 199 cubic {5,4,4} 36 (3,7)
Full image sqc12929 I213 199 cubic {3,5,5} 36 (3,7)
Full image sqc12930 Fm-3m 225 cubic {3,5} 36 (2,5)
Full image sqc12931 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12932 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12933 P4232 208 cubic {5,3} 36 (2,6)
Full image sqc12934 P4232 208 cubic {3,5} 36 (2,6)
Full image sqc12935 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12936 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12937 I213 199 cubic {5,4,4} 36 (3,7)
Full image sqc12938 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12939 P4232 208 cubic {5,4} 36 (2,6)
Full image sqc12940 P4232 208 cubic {4,4,6,4,3} 38 (5,6)
Full image sqc12941 P4232 208 cubic {4,3,4,4,4} 40 (5,6)
Full image sqc12942 P4232 208 cubic {4,4,4,3,4} 40 (5,6)
Full image sqc12943 I41/acd 142 tetragonal {16,3,3} 36 (3,6)
Full image sqc12944 I41/acd 142 tetragonal {4,16,4} 28 (3,6)
Full image sqc12945 I41/acd 142 tetragonal {4,3,3,8} 44 (4,6)
Full image sqc12946 I41/acd 142 tetragonal {4,3,3,8} 44 (4,6)
Full image sqc12947 I41/acd 142 tetragonal {8,3,3} 40 (3,5)
Full image sqc12948 I41/acd 142 tetragonal {8,3,3} 40 (3,6)
Full image sqc12949 I41/acd 142 tetragonal {7,3} 32 (2,6)
Full image sqc12950 I41/acd 142 tetragonal {3,7} 32 (2,6)
Full image sqc12951 I41/acd 142 tetragonal {3,7} 32 (2,6)
Full image sqc12952 I41/acd 142 tetragonal {7,3} 32 (2,6)
Full image sqc12953 I41/acd 142 tetragonal {6,4} 32 (2,6)
Full image sqc12954 I41/acd 142 tetragonal {4,6} 32 (2,6)
Full image sqc12955 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12956 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12957 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12958 I41/acd 142 tetragonal {4,4,3,4} 44 (4,6)
Full image sqc12959 I41/acd 142 tetragonal {4,3,4,4} 44 (4,6)
Full image sqc12960 I41/acd 142 tetragonal {4,3,4,4} 44 (4,6)
Full image sqc12961 I41/acd 142 tetragonal {4,16,4} 28 (3,6)
Full image sqc12962 I41/acd 142 tetragonal {6,4} 32 (2,6)
Full image sqc12963 I41/acd 142 tetragonal {8,3,3} 40 (3,5)
Full image sqc12964 I41/acd 142 tetragonal {4,8,8} 28 (3,6)
Full image sqc12965 I41/acd 142 tetragonal {3,12,4,4} 36 (4,5)
Full image sqc12966 I41/acd 142 tetragonal {3,12,4,4} 36 (4,5)
Full image sqc12967 I41/acd 142 tetragonal {4,4,8} 36 (3,6)
Full image sqc12968 I41/acd 142 tetragonal {4,8,8} 28 (3,6)
Full image sqc12969 I41/acd 142 tetragonal {4,8,6,4} 28 (4,5)
Full image sqc12970 I41/acd 142 tetragonal {4,8,6,4} 28 (4,5)
Full image sqc12971 I41/acd 142 tetragonal {8,4,4} 36 (3,5)
Full image sqc12972 I41/acd 142 tetragonal {8,4,4} 36 (3,5)
Full image sqc12973 I41/acd 142 tetragonal {3,6,4,8} 36 (4,5)
Full image sqc12974 I41/acd 142 tetragonal {3,6,4,8} 36 (4,5)
Full image sqc12975 I41/acd 142 tetragonal {3,6,8,4} 36 (4,5)
Full image sqc12976 I41/acd 142 tetragonal {3,6,8,4} 36 (4,5)
Full image sqc12977 I41/acd 142 tetragonal {7,3} 32 (2,6)
Full image sqc12978 I41/acd 142 tetragonal {7,3} 32 (2,6)
Full image sqc12979 I41/acd 142 tetragonal {3,7} 32 (2,6)
Full image sqc12980 I41/acd 142 tetragonal {3,7} 32 (2,6)
Full image sqc12981 I41/acd 142 tetragonal {4,4,6,4} 36 (4,5)
Full image sqc12982 I41/acd 142 tetragonal {6,4} 32 (2,6)
Full image sqc12983 I41/acd 142 tetragonal {4,6} 32 (2,6)
Full image sqc12984 I41/acd 142 tetragonal {6,4} 32 (2,6)
Full image sqc12985 I41/acd 142 tetragonal {4,4,6,4} 36 (4,5)
Full image sqc12986 I41/acd 142 tetragonal {3,6,4,4} 40 (4,5)
Full image sqc12987 I41/acd 142 tetragonal {3,6,4,4} 40 (4,5)
Full image sqc12988 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12989 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12990 I41/acd 142 tetragonal {5,5} 32 (2,6)
Full image sqc12991 I41/acd 142 tetragonal {4,4,4} 40 (3,6)
Full image sqc12992 I41/acd 142 tetragonal {4,3,4,4} 44 (4,6)
Full image sqc12993 I41/acd 142 tetragonal {4,3,4,4} 44 (4,6)
Full image sqc12994 I41/acd 142 tetragonal {3,4,4,4} 44 (4,6)
Full image sqc12995 I41/acd 142 tetragonal {3,4,4,4} 44 (4,6)
Full image sqc12996 I41/acd 142 tetragonal {4,4,4} 40 (3,5)
Full image sqc12997 I41/acd 142 tetragonal {4,4,4} 40 (3,5)
Full image sqc12998 I41/acd 142 tetragonal {4,4,4} 40 (3,5)
Full image sqc12999 I41/acd 142 tetragonal {4,4,4} 40 (3,5)