s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4600 P-42m 111 tetragonal {4,4,8,4} 10 (4,5)
Full image sqc4601 Pmmm 47 orthorhombic {3,4,7,4} 10 (4,6)
Full image sqc4602 Imma 74 orthorhombic {4,6,4,4} 10 (4,6)
Full image sqc4603 C2/c 15 monoclinic {4,6,4,4} 10 (4,7)
Full image sqc4604 C2/c 15 monoclinic {4,6,4,4} 10 (4,7)
Full image sqc4605 Imma 74 orthorhombic {4,6,4,4} 10 (4,6)
Full image sqc4606 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4607 P4/mmm 123 tetragonal {6,5} 8 (2,3)
Full image sqc4608 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4609 Cmma 67 orthorhombic {4,4,4,6} 10 (4,5)
Full image sqc4610 P4222 93 tetragonal {4,4,4,6} 10 (4,5)
Full image sqc4611 P42/mmc 131 tetragonal {4,4,6,4} 10 (4,5)
Full image sqc4612 P42/mcm 132 tetragonal {4,6,4,4} 10 (4,5)
Full image sqc4613 Fmmm 69 orthorhombic {6,4,4,4} 10 (4,5)
Full image sqc4614 Fmmm 69 orthorhombic {4,4,4,6} 10 (4,5)
Full image sqc4615 P-4m2 115 tetragonal {5,3} 12 (2,5)
Full image sqc4616 P-4m2 115 tetragonal {5,3} 12 (2,5)
Full image sqc4617 P4222 93 tetragonal {5,3} 12 (2,5)
Full image sqc4618 P4222 93 tetragonal {5,3} 12 (2,5)
Full image sqc4619 P4/mmm 123 tetragonal {3,5} 12 (2,5)
Full image sqc4620 P-42m 111 tetragonal {5,3} 12 (2,5)
Full image sqc4621 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc4622 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc4623 P4/mmm 123 tetragonal {3,5} 12 (2,5)
Full image sqc4624 P4/mmm 123 tetragonal {3,5} 12 (2,3)
Full image sqc4625 Imma 74 orthorhombic {4,4,4,3,4} 12 (5,5)
Full image sqc4626 Imma 74 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4627 Imma 74 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4628 Imma 74 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4629 C2/c 15 monoclinic {4,4,4,3,4} 12 (5,6)
Full image sqc4630 C2/c 15 monoclinic {4,4,4,3} 12 (4,7)
Full image sqc4631 C2/c 15 monoclinic {3,4,4,4} 12 (4,7)
Full image sqc4632 C2/c 15 monoclinic {4,3,4,4} 12 (4,7)
Full image sqc4633 Imma 74 orthorhombic {4,6,4,4} 10 (4,6)
Full image sqc4634 Imma 74 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4635 C2/c 15 monoclinic {4,3,4,4} 12 (4,7)
Full image sqc4636 Imma 74 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4637 C2/c 15 monoclinic {4,3,4,4} 12 (4,7)
Full image sqc4638 Imma 74 orthorhombic {6,4,4,4} 10 (4,6)
Full image sqc4639 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4640 C2/c 15 monoclinic {4,3,4,4} 12 (4,7)
Full image sqc4641 Imma 74 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4642 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4643 C2/c 15 monoclinic {3,4,4,4} 12 (4,7)
Full image sqc4644 Imma 74 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4645 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4646 I4/mmm 139 tetragonal {4,4,4,4} 11 (4,5)
Full image sqc4647 Cmma 67 orthorhombic {4,6} 10 (2,5)
Full image sqc4648 P-42m 111 tetragonal {4,3} 12 (2,5)
Full image sqc4649 P-42m 111 tetragonal {4,3} 12 (2,5)
Full image sqc4650 Cmma 67 orthorhombic {4,4,4,6} 10 (4,6)
Full image sqc4651 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4652 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4653 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4654 Fmmm 69 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4655 Fmmm 69 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4656 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4657 Fmmm 69 orthorhombic {4,4,4,6} 10 (4,5)
Full image sqc4658 P4222 93 tetragonal {4,3} 12 (2,5)
Full image sqc4659 P4/mmm 123 tetragonal {4,4,4,4} 11 (4,5)
Full image sqc4660 Imma 74 orthorhombic {4,4,4,6} 10 (4,6)
Full image sqc4661 P42/mmc 131 tetragonal {3,4} 12 (2,4)
Full image sqc4662 P4222 93 tetragonal {4,3} 12 (2,5)
Full image sqc4663 Cmma 67 orthorhombic {3,4} 12 (2,5)
Full image sqc4664 Imma 74 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4665 Imma 74 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4666 C2/c 15 monoclinic {4,4,4,3} 12 (4,7)
Full image sqc4667 Cmma 67 orthorhombic {6,4} 10 (2,5)
Full image sqc4668 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4669 Cmma 67 orthorhombic {4,3,4,4} 12 (4,6)
Full image sqc4670 C2/c 15 monoclinic {4,4,3,4} 12 (4,7)
Full image sqc4671 P4/mmm 123 tetragonal {4,6} 10 (2,4)
Full image sqc4672 Cmma 67 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4673 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4674 P4/mmm 123 tetragonal {4,3} 12 (2,4)
Full image sqc4675 C2/c 15 monoclinic {4,4,3,4} 12 (4,7)
Full image sqc4676 Fmmm 69 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4677 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4678 P4/mmm 123 tetragonal {3,4,4} 12 (3,4)
Full image sqc4679 Imma 74 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4680 Pmmm 47 orthorhombic {3,3,3,4,3} 14 (5,6)
Full image sqc4681 Pmmm 47 orthorhombic {3,4,3,3,3} 14 (5,6)
Full image sqc4682 C2/c 15 monoclinic {4,4,4,3} 12 (4,7)
Full image sqc4683 P4222 93 tetragonal {4,3} 12 (2,5)
Full image sqc4684 Imma 74 orthorhombic {4,4,3,4,4} 12 (5,7)
Full image sqc4685 C2/c 15 monoclinic {4,4,3,4} 12 (4,7)
Full image sqc4686 Cmma 67 orthorhombic {4,4,3,4} 12 (4,6)
Full image sqc4687 C2/c 15 monoclinic {4,3,4,4} 12 (4,7)
Full image sqc4688 P42/mmc 131 tetragonal {3,3,4} 14 (3,4)
Full image sqc4689 C2/c 15 monoclinic {3,4,4,4} 12 (4,7)
Full image sqc4690 C2/c 15 monoclinic {3,4,4,4} 12 (4,7)
Full image sqc4691 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4692 C2/c 15 monoclinic {4,4,4,3} 12 (4,7)
Full image sqc4693 C2/c 15 monoclinic {3,4,4,4} 12 (4,7)
Full image sqc4694 C2/c 15 monoclinic {4,4,4,3,4} 12 (5,6)
Full image sqc4695 Imma 74 orthorhombic {4,4,4,3,4} 12 (5,5)
Full image sqc4696 Cmma 67 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4697 Imma 74 orthorhombic {4,4,4,3} 12 (4,6)
Full image sqc4698 Imma 74 orthorhombic {3,4,4,4} 12 (4,6)
Full image sqc4699 Cmma 67 orthorhombic {6,4} 10 (2,5)