s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6000 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6001 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6002 Fmmm 69 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6003 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc6004 Fmmm 69 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc6005 Fmmm 69 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6006 Fmmm 69 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6007 C2/c 15 monoclinic {4,6,4,4,4} 12 (5,7)
Full image sqc6008 Imma 74 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc6009 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6010 P42/mmc 131 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc6011 P4222 93 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc6012 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc6013 Fmmm 69 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6014 P4222 93 tetragonal {6,4,4,4,4} 12 (5,6)
Full image sqc6015 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc6016 C2/c 15 monoclinic {4,4,6,4,4} 12 (5,7)
Full image sqc6017 Imma 74 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6018 P4/mmm 123 tetragonal {4,5} 12 (2,4)
Full image sqc6019 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6020 P42/mmc 131 tetragonal {5,4} 12 (2,3)
Full image sqc6021 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6022 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc6023 P4222 93 tetragonal {3,5} 12 (2,6)
Full image sqc6024 P4222 93 tetragonal {5,3} 12 (2,6)
Full image sqc6025 P4/mmm 123 tetragonal {4,5} 12 (2,4)
Full image sqc6026 P-4m2 115 tetragonal {5,4} 12 (2,6)
Full image sqc6027 P-42m 111 tetragonal {3,5} 12 (2,6)
Full image sqc6028 P-42m 111 tetragonal {5,3} 12 (2,6)
Full image sqc6029 P4222 93 tetragonal {5,3} 12 (2,6)
Full image sqc6030 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6031 P4222 93 tetragonal {4,5} 12 (2,6)
Full image sqc6032 P4222 93 tetragonal {5,4} 12 (2,6)
Full image sqc6033 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6034 P4222 93 tetragonal {5,4} 12 (2,6)
Full image sqc6035 P4222 93 tetragonal {5,4} 12 (2,6)
Full image sqc6036 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6037 P4222 93 tetragonal {3,5} 12 (2,6)
Full image sqc6038 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6039 Fmmm 69 orthorhombic {6,5} 10 (2,6)
Full image sqc6040 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc6041 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6042 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6043 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6044 P4/mmm 123 tetragonal {5,3} 12 (2,5)
Full image sqc6045 I4/mmm 139 tetragonal {5,3} 12 (2,5)
Full image sqc6046 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6047 Fmmm 69 orthorhombic {3,5} 12 (2,6)
Full image sqc6048 P4/mmm 123 tetragonal {3,5} 12 (2,5)
Full image sqc6049 Fmmm 69 orthorhombic {3,5} 12 (2,6)
Full image sqc6050 Fmmm 69 orthorhombic {4,5} 12 (2,7)
Full image sqc6051 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6052 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6053 Fmmm 69 orthorhombic {5,3} 12 (2,6)
Full image sqc6054 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6055 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6056 P-42m 111 tetragonal {5,4} 12 (2,6)
Full image sqc6057 C2/c 15 monoclinic {3,5,5} 12 (3,7)
Full image sqc6058 P42/mmc 131 tetragonal {5,4} 12 (2,3)
Full image sqc6059 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc6060 Imma 74 orthorhombic {3,5} 12 (2,6)
Full image sqc6061 Cmma 67 orthorhombic {5,3} 12 (2,6)
Full image sqc6062 Fmmm 69 orthorhombic {3,5} 12 (2,6)
Full image sqc6063 P42/mmc 131 tetragonal {5,3,4} 14 (3,3)
Full image sqc6064 P42/mmc 131 tetragonal {5,3,4} 14 (3,3)
Full image sqc6065 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc6066 Imma 74 orthorhombic {4,4,4,4,3} 14 (5,7)
Full image sqc6067 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc6068 Imma 74 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc6069 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc6070 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc6071 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc6072 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6073 C2/c 15 monoclinic {4,4,4,6,4} 12 (5,7)
Full image sqc6074 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6075 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6076 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc6077 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6078 Imma 74 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc6079 P42/mmc 131 tetragonal {3,4,4} 14 (3,4)
Full image sqc6080 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc6081 Fmmm 69 orthorhombic {6,4,4,4,4} 12 (5,6)
Full image sqc6082 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6083 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc6084 Imma 74 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc6085 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc6086 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc6087 P4/mmm 123 tetragonal {4,5} 12 (2,5)
Full image sqc6088 C2/c 15 monoclinic {4,4,4,3,4} 14 (5,8)
Full image sqc6089 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc6090 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc6091 C2/c 15 monoclinic {4,4,4,4,3} 14 (5,8)
Full image sqc6092 Cmma 67 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc6093 P4/mmm 123 tetragonal {3,3,4} 16 (3,5)
Full image sqc6094 C2/c 15 monoclinic {4,4,4,4,3} 14 (5,8)
Full image sqc6095 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc6096 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc6097 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc6098 Imma 74 orthorhombic {4,4,4,4,3} 14 (5,7)
Full image sqc6099 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)