s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5800 Imma 74 orthorhombic {7,3} 12 (2,7)
Full image sqc5801 C2/c 15 monoclinic {7,3,3} 12 (3,7)
Full image sqc5802 C2/c 15 monoclinic {4,4,8,6,4} 10 (5,7)
Full image sqc5803 Imma 74 orthorhombic {4,4,8,6,4} 10 (5,6)
Full image sqc5804 Imma 74 orthorhombic {4,4,8,6,4} 10 (5,6)
Full image sqc5805 P-4m2 115 tetragonal {7,3} 12 (2,6)
Full image sqc5806 P42/mmc 131 tetragonal {7,3} 12 (2,4)
Full image sqc5807 Cmma 67 orthorhombic {7,3} 12 (2,7)
Full image sqc5808 C2/c 15 monoclinic {8,6,4,4,4} 10 (5,7)
Full image sqc5809 Imma 74 orthorhombic {8,6,4,4,4} 10 (5,6)
Full image sqc5810 P4222 93 tetragonal {4,4,4,4,6} 12 (5,6)
Full image sqc5811 Cmma 67 orthorhombic {4,4,4,4,6} 12 (5,6)
Full image sqc5812 Pmmm 47 orthorhombic {3,4,7,4,4} 12 (5,7)
Full image sqc5813 C2/c 15 monoclinic {7,6} 8 (2,8)
Full image sqc5814 Imma 74 orthorhombic {6,7} 8 (2,7)
Full image sqc5815 C2/c 15 monoclinic {6,7} 8 (2,8)
Full image sqc5816 Imma 74 orthorhombic {6,5} 10 (2,6)
Full image sqc5817 Fmmm 69 orthorhombic {5,6} 10 (2,6)
Full image sqc5818 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc5819 Imma 74 orthorhombic {6,5} 10 (2,6)
Full image sqc5820 C2/c 15 monoclinic {6,5,5} 10 (3,7)
Full image sqc5821 I212121 24 orthorhombic {6,5,5} 10 (3,7)
Full image sqc5822 P4222 93 tetragonal {5,3} 12 (2,6)
Full image sqc5823 P4222 93 tetragonal {5,6} 10 (2,6)
Full image sqc5824 P4222 93 tetragonal {3,5} 12 (2,6)
Full image sqc5825 P4222 93 tetragonal {3,5} 12 (2,6)
Full image sqc5826 Cmma 67 orthorhombic {5,8} 8 (2,7)
Full image sqc5827 P4222 93 tetragonal {5,6} 10 (2,6)
Full image sqc5828 Imma 74 orthorhombic {8,5} 8 (2,7)
Full image sqc5829 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5830 I212121 24 orthorhombic {6,5,5} 10 (3,7)
Full image sqc5831 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5832 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5833 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc5834 Imma 74 orthorhombic {5,4} 12 (2,6)
Full image sqc5835 C2/c 15 monoclinic {8,5} 8 (2,8)
Full image sqc5836 C2/c 15 monoclinic {6,5,5} 10 (3,7)
Full image sqc5837 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5838 C2/c 15 monoclinic {6,5,5} 10 (3,7)
Full image sqc5839 C2/c 15 monoclinic {5,4,4} 12 (3,7)
Full image sqc5840 I212121 24 orthorhombic {3,5,5} 12 (3,7)
Full image sqc5841 P4222 93 tetragonal {5,3} 12 (2,6)
Full image sqc5842 C2/c 15 monoclinic {3,5,5} 12 (3,7)
Full image sqc5843 Fmmm 69 orthorhombic {4,5} 12 (2,6)
Full image sqc5844 Fmmm 69 orthorhombic {5,4} 12 (2,6)
Full image sqc5845 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5846 P4222 93 tetragonal {5,3} 12 (2,6)
Full image sqc5847 C2/c 15 monoclinic {5,4,4} 12 (3,7)
Full image sqc5848 Cmma 67 orthorhombic {3,5} 12 (2,6)
Full image sqc5849 C2/c 15 monoclinic {3,5,5} 12 (3,7)
Full image sqc5850 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5851 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5852 Fmmm 69 orthorhombic {5,4} 12 (2,6)
Full image sqc5853 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5854 I212121 24 orthorhombic {5,4,4} 12 (3,7)
Full image sqc5855 C2/c 15 monoclinic {4,8,6,4,4} 10 (5,7)
Full image sqc5856 C2/c 15 monoclinic {4,4,8,6,4} 10 (5,7)
Full image sqc5857 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5858 C2/c 15 monoclinic {4,4,4,4,3} 14 (5,8)
Full image sqc5859 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc5860 Imma 74 orthorhombic {4,8,6,4,4} 10 (5,6)
Full image sqc5861 I212121 24 orthorhombic {4,8,3,4,4} 12 (5,7)
Full image sqc5862 Imma 74 orthorhombic {4,4,8,6,4} 10 (5,6)
Full image sqc5863 Imma 74 orthorhombic {4,4,4,4,3} 14 (5,7)
Full image sqc5864 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5865 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc5866 C2/c 15 monoclinic {4,8,3,4,4} 12 (5,7)
Full image sqc5867 Imma 74 orthorhombic {4,8,3,4,4} 12 (5,6)
Full image sqc5868 I212121 24 orthorhombic {4,4,8,6,4} 10 (5,7)
Full image sqc5869 I212121 24 orthorhombic {4,4,4,4,3} 14 (5,8)
Full image sqc5870 I212121 24 orthorhombic {3,4,4,4,4} 14 (5,8)
Full image sqc5871 I212121 24 orthorhombic {4,3,4,4,4} 14 (5,8)
Full image sqc5872 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc5873 Imma 74 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc5874 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc5875 C2/c 15 monoclinic {4,4,4,3,4} 14 (5,8)
Full image sqc5876 I212121 24 orthorhombic {4,4,4,3,4} 14 (5,8)
Full image sqc5877 I212121 24 orthorhombic {4,3,4,4,4} 14 (5,8)
Full image sqc5878 I212121 24 orthorhombic {3,4,4,4,4} 14 (5,8)
Full image sqc5879 C2/c 15 monoclinic {4,4,4,6,4} 12 (5,7)
Full image sqc5880 I212121 24 orthorhombic {4,4,4,6,4} 12 (5,7)
Full image sqc5881 I212121 24 orthorhombic {3,4,4,4,4} 14 (5,8)
Full image sqc5882 Imma 74 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc5883 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5884 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5885 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5886 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5887 C2/c 15 monoclinic {4,3,4,4,4} 14 (5,8)
Full image sqc5888 I212121 24 orthorhombic {4,4,3,4,4} 14 (5,8)
Full image sqc5889 Imma 74 orthorhombic {4,3,4,4,4} 14 (5,7)
Full image sqc5890 Imma 74 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5891 I212121 24 orthorhombic {4,3,4,4,4} 14 (5,8)
Full image sqc5892 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc5893 Fmmm 69 orthorhombic {4,3,8,4,4} 12 (5,6)
Full image sqc5894 Fmmm 69 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5895 I212121 24 orthorhombic {4,4,6,4,4} 12 (5,7)
Full image sqc5896 C2/c 15 monoclinic {4,4,6,4,4} 12 (5,7)
Full image sqc5897 I212121 24 orthorhombic {4,6,4,4,4} 12 (5,7)
Full image sqc5898 C2/c 15 monoclinic {4,6,4,4,4} 12 (5,7)
Full image sqc5899 P4/mmm 123 tetragonal {3,6,4} 12 (3,5)