s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5900 P4222 93 tetragonal {4,3,4,4,4} 14 (5,6)
Full image sqc5901 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc5902 Imma 74 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5903 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5904 I212121 24 orthorhombic {4,4,3,4,4} 14 (5,8)
Full image sqc5905 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5906 Fmmm 69 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5907 Cmma 67 orthorhombic {6,4,4,4,4} 12 (5,6)
Full image sqc5908 Fmmm 69 orthorhombic {3,4,4,4,4} 14 (5,6)
Full image sqc5909 Cmma 67 orthorhombic {4,3,4,4,4} 14 (5,6)
Full image sqc5910 P4222 93 tetragonal {4,3,4,4,4} 14 (5,6)
Full image sqc5911 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5912 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc5913 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5914 Imma 74 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5915 C2/c 15 monoclinic {4,4,4,3,4} 14 (5,8)
Full image sqc5916 Imma 74 orthorhombic {4,4,4,3,4} 14 (5,7)
Full image sqc5917 C2/c 15 monoclinic {4,4,3,4,4} 14 (5,8)
Full image sqc5918 Imma 74 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5919 C2/c 15 monoclinic {3,4,4,4,4} 14 (5,8)
Full image sqc5920 Imma 74 orthorhombic {3,4,4,4,4} 14 (5,7)
Full image sqc5921 P4222 93 tetragonal {3,4,4,4,8} 12 (5,6)
Full image sqc5922 P4/mmm 123 tetragonal {3,3,4} 16 (3,3)
Full image sqc5923 P4222 93 tetragonal {3,4,4,4,4} 14 (5,6)
Full image sqc5924 P4222 93 tetragonal {3,5} 12 (2,6)
Full image sqc5925 Cmma 67 orthorhombic {4,4,4,6,4} 12 (5,6)
Full image sqc5926 P4222 93 tetragonal {3,7} 12 (2,6)
Full image sqc5927 P-42m 111 tetragonal {3,4,4,8,8} 12 (5,6)
Full image sqc5928 P4222 93 tetragonal {4,4,3,8,4} 12 (5,6)
Full image sqc5929 Imma 74 orthorhombic {7,6} 8 (2,7)
Full image sqc5930 P4222 93 tetragonal {7,3} 12 (2,6)
Full image sqc5931 I212121 24 orthorhombic {8,6,4,4,4} 10 (5,7)
Full image sqc5932 Imma 74 orthorhombic {4,8,3,4,4} 12 (5,6)
Full image sqc5933 P4/mmm 123 tetragonal {3,7} 12 (2,4)
Full image sqc5934 Fmmm 69 orthorhombic {4,4,3,4,8} 12 (5,6)
Full image sqc5935 C2/c 15 monoclinic {6,5,5} 10 (3,7)
Full image sqc5936 P4222 93 tetragonal {4,4,4,4,6} 12 (5,6)
Full image sqc5937 P4/mmm 123 tetragonal {5,6} 10 (2,5)
Full image sqc5938 P4/mmm 123 tetragonal {5,3} 12 (2,5)
Full image sqc5939 P-42m 111 tetragonal {4,5} 12 (2,6)
Full image sqc5940 Pmmm 47 orthorhombic {5,4} 12 (2,7)
Full image sqc5941 P4/mmm 123 tetragonal {3,5} 12 (2,5)
Full image sqc5942 Cmma 67 orthorhombic {5,4} 12 (2,6)
Full image sqc5943 Imma 74 orthorhombic {5,4} 12 (2,6)
Full image sqc5944 Fmmm 69 orthorhombic {4,5} 12 (2,6)
Full image sqc5945 Fmmm 69 orthorhombic {4,5} 12 (2,6)
Full image sqc5946 Cmma 67 orthorhombic {4,5} 12 (2,6)
Full image sqc5947 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5948 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,7)
Full image sqc5949 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5950 P4222 93 tetragonal {4,3,4,4,4} 14 (5,6)
Full image sqc5951 Cmma 67 orthorhombic {4,4,3,4,4} 14 (5,6)
Full image sqc5952 Imma 74 orthorhombic {4,8,6,4,4} 10 (5,6)
Full image sqc5953 Cmma 67 orthorhombic {4,4,3,8,4} 12 (5,6)
Full image sqc5954 P4222 93 tetragonal {3,4,4,4,4} 14 (5,6)
Full image sqc5955 P4222 93 tetragonal {3,4,4,4,4} 14 (5,6)
Full image sqc5956 P4222 93 tetragonal {4,6,4,4,4} 12 (5,6)
Full image sqc5957 P4222 93 tetragonal {4,3,4,4,8} 12 (5,6)
Full image sqc5958 Cmma 67 orthorhombic {3,4,4,8,4} 12 (5,6)
Full image sqc5959 C2/c 15 monoclinic {8,3,4,4,4} 12 (5,7)
Full image sqc5960 Cmma 67 orthorhombic {8,3,4,4,4} 12 (5,6)
Full image sqc5961 Imma 74 orthorhombic {8,3,4,4,4} 12 (5,6)
Full image sqc5962 P-42m 111 tetragonal {4,4,4,8,4} 12 (5,6)
Full image sqc5963 P4222 93 tetragonal {3,4,4,4,8} 12 (5,6)
Full image sqc5964 C2/c 15 monoclinic {4,8,3,4,4} 12 (5,7)
Full image sqc5965 P4222 93 tetragonal {4,4,4,3,8} 12 (5,6)
Full image sqc5966 P4222 93 tetragonal {5,6} 10 (2,6)
Full image sqc5967 Cmma 67 orthorhombic {5,6} 10 (2,6)
Full image sqc5968 Fmmm 69 orthorhombic {5,6} 10 (2,6)
Full image sqc5969 Fmmm 69 orthorhombic {5,6} 10 (2,6)
Full image sqc5970 P4222 93 tetragonal {4,4,6,4,4} 12 (5,6)
Full image sqc5971 P4222 93 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc5972 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5973 P4222 93 tetragonal {5,6} 10 (2,6)
Full image sqc5974 C2/c 15 monoclinic {6,5,5} 10 (3,7)
Full image sqc5975 Imma 74 orthorhombic {6,5} 10 (2,6)
Full image sqc5976 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5977 Cmma 67 orthorhombic {6,5} 10 (2,6)
Full image sqc5978 C2/c 15 monoclinic {4,6,4,4,4} 12 (5,7)
Full image sqc5979 Cmma 67 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5980 P4222 93 tetragonal {4,4,4,6,4} 12 (5,6)
Full image sqc5981 C2/c 15 monoclinic {4,4,6,4,4} 12 (5,7)
Full image sqc5982 Cmma 67 orthorhombic {4,4,6,4,4} 12 (5,6)
Full image sqc5983 P42/mmc 131 tetragonal {6,3,4} 14 (3,3)
Full image sqc5984 Cmma 67 orthorhombic {4,3,4,8,4} 12 (5,6)
Full image sqc5985 Fmmm 69 orthorhombic {8,4,3,4,4} 12 (5,6)
Full image sqc5986 Fmmm 69 orthorhombic {3,4,4,4,8} 12 (5,6)
Full image sqc5987 Cmma 67 orthorhombic {8,4,3,4,4} 12 (5,6)
Full image sqc5988 Fmmm 69 orthorhombic {4,4,3,8,4} 12 (5,6)
Full image sqc5989 Imma 74 orthorhombic {4,8,3,4,4} 12 (5,6)
Full image sqc5990 C2/c 15 monoclinic {4,8,3,4,4} 12 (5,7)
Full image sqc5991 P-42m 111 tetragonal {4,4,4,8,4} 12 (5,6)
Full image sqc5992 Pmmm 47 orthorhombic {3,4,8,4,3} 12 (5,7)
Full image sqc5993 P42/mmc 131 tetragonal {3,8,3} 14 (3,4)
Full image sqc5994 Cmma 67 orthorhombic {4,8,3,4,4} 12 (5,6)
Full image sqc5995 Pmmm 47 orthorhombic {3,4,4,7,4} 12 (5,7)
Full image sqc5996 P4/mmm 123 tetragonal {7,3} 12 (2,4)
Full image sqc5997 Fmmm 69 orthorhombic {4,6,4,4,4} 12 (5,6)
Full image sqc5998 C2/c 15 monoclinic {4,4,4,6,4} 12 (5,7)
Full image sqc5999 Imma 74 orthorhombic {4,4,4,6,4} 12 (5,6)