Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (2,7,5) |
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.4.4.4.4.4.4}{4.4.4} |
Delaney-Dress Symbol | <2301.2:14:1 2 3 4 5 7 9 10 11 12 13 14,2 4 6 14 10 11 13,1 3 5 8 9 10 12 14:4 4 4 4 4,8 3> |
Dual net | hqc2332 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc1149 | Pmmm | 47 | orthorhombic | {3,8} | 6 | (2,7) | ||
sqc6399 | Fmmm | 69 | orthorhombic | {3,8} | 12 | (2,7) | ||
sqc11749 | P4/mmm | 123 | tetragonal | {8,3} | 24 | (2,7) | ||
sqc11729 | I4122 | 98 | tetragonal | {8,3,3} | 24 | (3,8) | ||
sqc11731 | I4122 | 98 | tetragonal | {8,3,3} | 24 | (3,8) | ||
sqc11750 | I4122 | 98 | tetragonal | {8,3,3} | 24 | (3,8) | ||
sqc11761 | I4122 | 98 | tetragonal | {8,3,3} | 24 | (3,8) | ||
sqc11763 | I4122 | 98 | tetragonal | {8,3,3} | 24 | (3,8) | ||
sqc11774 | Fddd | 70 | orthorhombic | {8,3,3} | 24 | (3,8) | ||
sqc11775 | Fddd | 70 | orthorhombic | {8,3,3} | 24 | (3,8) | ||
sqc11780 | Fddd | 70 | orthorhombic | {8,3,3} | 24 | (3,8) | ||
sqc11838 | Fddd | 70 | orthorhombic | {8,3,3} | 24 | (3,8) | ||
sqc11839 | Fddd | 70 | orthorhombic | {8,3,3} | 24 | (3,8) | ||
sqc1177 | Pmmm | 47 | orthorhombic | {3,8} | 6 | (2,7) | ||
sqc1183 | Pmmm | 47 | orthorhombic | {3,8} | 6 | (2,7) | ||
sqc6270 | P4222 | 93 | tetragonal | {3,8} | 12 | (2,7) | ||
sqc6284 | P4222 | 93 | tetragonal | {8,3} | 12 | (2,7) | ||
sqc6433 | P4222 | 93 | tetragonal | {8,3} | 12 | (2,7) | ||
sqc6435 | P4222 | 93 | tetragonal | {8,3} | 12 | (2,7) | ||
sqc6476 | Cmma | 67 | orthorhombic | {8,3} | 12 | (2,7) | ||
sqc6477 | Cmma | 67 | orthorhombic | {3,8} | 12 | (2,7) | ||
sqc6516 | P4222 | 93 | tetragonal | {3,8} | 12 | (2,7) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC2941 | *22222a | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc11731 | sqc6284 | |
UQC2942 | *22222a | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc5686 | sqc11729 | sqc6270 | |
UQC2943 | *22222a | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc11749 | sqc11750 | sqc6516 | |
UQC2944 | *22222a | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc11437 | sqc11761 | sqc6433 | |
UQC2945 | *22222b | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc5754 | sqc11775 | sqc1183 | |
UQC2946 | *22222b | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc1149 | sqc11774 | sqc6477 | |
UQC2947 | *22222b | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc1149 | sqc11838 | sqc6476 | |
UQC2948 | *22222b | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | sqc6399 | sqc11839 | sqc1149 | |
UQC2949 | *22222a | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc11763 | sqc6435 | |
UQC2950 | *22222b | (2,7,5) | {8,3} | {4.4.4.4.4.4.4.4}{4.4.4} | No s‑net | sqc11780 | sqc1177 |