h-net: hqc2301


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,7,5)
Vertex degrees{8,3}
2D vertex symbol {4.4.4.4.4.4.4.4}{4.4.4}
Delaney-Dress Symbol <2301.2:14:1 2 3 4 5 7 9 10 11 12 13 14,2 4 6 14 10 11 13,1 3 5 8 9 10 12 14:4 4 4 4 4,8 3>
Dual net hqc2332

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1149 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc6399 Fmmm 69 orthorhombic {3,8} 12 (2,7)
Full image sqc11749 P4/mmm 123 tetragonal {8,3} 24 (2,7)
Full image sqc11729 I4122 98 tetragonal {8,3,3} 24 (3,8)
Full image sqc11731 I4122 98 tetragonal {8,3,3} 24 (3,8)
Full image sqc11750 I4122 98 tetragonal {8,3,3} 24 (3,8)
Full image sqc11761 I4122 98 tetragonal {8,3,3} 24 (3,8)
Full image sqc11763 I4122 98 tetragonal {8,3,3} 24 (3,8)
Full image sqc11774 Fddd 70 orthorhombic {8,3,3} 24 (3,8)
Full image sqc11775 Fddd 70 orthorhombic {8,3,3} 24 (3,8)
Full image sqc11780 Fddd 70 orthorhombic {8,3,3} 24 (3,8)
Full image sqc11838 Fddd 70 orthorhombic {8,3,3} 24 (3,8)
Full image sqc11839 Fddd 70 orthorhombic {8,3,3} 24 (3,8)
Full image sqc1177 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc1183 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc6270 P4222 93 tetragonal {3,8} 12 (2,7)
Full image sqc6284 P4222 93 tetragonal {8,3} 12 (2,7)
Full image sqc6433 P4222 93 tetragonal {8,3} 12 (2,7)
Full image sqc6435 P4222 93 tetragonal {8,3} 12 (2,7)
Full image sqc6476 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6477 Cmma 67 orthorhombic {3,8} 12 (2,7)
Full image sqc6516 P4222 93 tetragonal {3,8} 12 (2,7)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2941 *22222a (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc11731 Snet sqc6284
Tiling details UQC2942 *22222a (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc5686 Snet sqc11729 Snet sqc6270
Tiling details UQC2943 *22222a (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc11749 Snet sqc11750 Snet sqc6516
Tiling details UQC2944 *22222a (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc11437 Snet sqc11761 Snet sqc6433
Tiling details UQC2945 *22222b (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc5754 Snet sqc11775 Snet sqc1183
Tiling details UQC2946 *22222b (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc1149 Snet sqc11774 Snet sqc6477
Tiling details UQC2947 *22222b (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc1149 Snet sqc11838 Snet sqc6476
Tiling details UQC2948 *22222b (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} Snet sqc6399 Snet sqc11839 Snet sqc1149
Tiling details UQC2949 *22222a (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc11763 Snet sqc6435
Tiling details UQC2950 *22222b (2,7,5) {8,3} {4.4.4.4.4.4.4.4}{4.4.4} No s‑net Snet sqc11780 Snet sqc1177

Symmetry-lowered hyperbolic tilings