Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
sqc178 Pmmm 47 orthorhombic {5,3} 4 (2,4)
sqc179 Pmmm 47 orthorhombic {5,3} 4 (2,4)
sqc180 Pmmm 47 orthorhombic {6,4,3} 4 (3,4)
sqc181 Pmmm 47 orthorhombic {6,4,3} 4 (3,4)
sqc189 Pmmm 47 orthorhombic {4,14} 2 (2,4)
sqc190 Pmmm 47 orthorhombic {12,3} 3 (2,5)
sqc191 Pmmm 47 orthorhombic {10,4} 3 (2,5)
sqc193 Pmmm 47 orthorhombic {14,4} 2 (2,5)
sqc194 Pmmm 47 orthorhombic {6,12} 2 (2,5)
sqc195 Pmmm 47 orthorhombic {12,3} 3 (2,5)
sqc196 Pmmm 47 orthorhombic {3,12} 3 (2,5)
sqc197 Pmmm 47 orthorhombic {12,6} 2 (2,5)
sqc199 Pmmm 47 orthorhombic {12,6} 2 (2,5)
sqc200 Pmmm 47 orthorhombic {12,6} 2 (2,5)
sqc201 Pmmm 47 orthorhombic {12,3} 3 (2,5)
sqc202 Pmmm 47 orthorhombic {12,3} 3 (2,5)
sqc203 Pmmm 47 orthorhombic {12,3} 3 (2,5)
sqc204 Pmmm 47 orthorhombic {10,4} 3 (2,6)
sqc205 Pmmm 47 orthorhombic {10,4} 3 (2,6)
sqc206 Pmmm 47 orthorhombic {8,10} 2 (2,5)
sqc207 Pmmm 47 orthorhombic {8,10} 2 (2,5)
sqc208 Pmmm 47 orthorhombic {4,10} 3 (2,5)
sqc210 Pmmm 47 orthorhombic {10,4} 3 (2,5)
sqc218 Pmmm 47 orthorhombic {4,10} 3 (2,6)
sqc219 Pmmm 47 orthorhombic {4,6,8} 3 (3,5)
sqc220 Pmmm 47 orthorhombic {4,6,8} 3 (3,5)
sqc221 Pmmm 47 orthorhombic {8,4,6} 3 (3,5)
sqc222 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc223 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc224 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc225 Pmmm 47 orthorhombic {4,3,8} 4 (3,5)
sqc226 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
sqc227 Pmmm 47 orthorhombic {5,8} 3 (2,5)
sqc230 Pmmm 47 orthorhombic {7,4} 3 (2,4)
sqc232 Pmmm 47 orthorhombic {6,6} 3 (2,6)
sqc233 Pmmm 47 orthorhombic {4,7} 3 (2,4)
sqc235 Pmmm 47 orthorhombic {6,8,4} 3 (3,5)
sqc236 Pmmm 47 orthorhombic {8,6,4} 3 (3,5)
sqc237 Pmmm 47 orthorhombic {6,8,4} 3 (3,5)
sqc238 Pmmm 47 orthorhombic {7,4} 3 (2,4)
sqc239 Pmmm 47 orthorhombic {4,3,8} 4 (3,5)
sqc240 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
sqc241 Pmmm 47 orthorhombic {4,6,8} 3 (3,4)
sqc242 Pmmm 47 orthorhombic {4,8,6} 3 (3,5)
sqc247 btu Pmmm 47 orthorhombic {6,6} 3 (2,5)
sqc248 Pmmm 47 orthorhombic {6,6} 3 (2,5)
sqc251 Pmmm 47 orthorhombic {6,3} 4 (2,5)
sqc252 Pmmm 47 orthorhombic {4,4,4,6} 4 (4,6)
sqc253 Pmmm 47 orthorhombic {4,4,6,4} 4 (4,6)
sqc255 Pmmm 47 orthorhombic {7,4} 3 (2,4)
sqc257 Pmmm 47 orthorhombic {4,7} 3 (2,4)
sqc259 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
sqc260 Pmmm 47 orthorhombic {3,4,8} 4 (3,5)
sqc263 Pmmm 47 orthorhombic {6,6} 3 (2,5)
sqc265 Pmmm 47 orthorhombic {6,6} 3 (2,5)
sqc266 Pmmm 47 orthorhombic {6,6} 3 (2,5)
sqc267 Pmmm 47 orthorhombic {4,6,4} 4 (3,5)
sqc268 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
sqc269 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
sqc270 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
sqc271 Pmmm 47 orthorhombic {4,6,4} 4 (3,5)
sqc274 Pmmm 47 orthorhombic {6,3} 4 (2,5)
sqc276 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc277 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc279 Pmmm 47 orthorhombic {8,5} 3 (2,5)
sqc280 Pmmm 47 orthorhombic {4,5} 4 (2,5)
sqc281 Pmmm 47 orthorhombic {4,8,3} 4 (3,5)
sqc282 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
sqc283 Pmmm 47 orthorhombic {6,4,4,4} 4 (4,4)
sqc285 Pmmm 47 orthorhombic {4,4,3,4} 5 (4,4)
sqc286 Pmmm 47 orthorhombic {4,3,4,4} 5 (4,4)
sqc287 Pmmm 47 orthorhombic {3,4,4,4} 5 (4,4)
sqc295 Pmmm 47 orthorhombic {3,6} 5 (2,4)
sqc297 Pmmm 47 orthorhombic {5,4} 4 (2,5)
sqc300 Pmmm 47 orthorhombic {4,4,3} 5 (3,5)
sqc301 Pmmm 47 orthorhombic {4,4,3} 5 (3,5)
sqc303 Pmmm 47 orthorhombic {3,4,4} 5 (3,5)
sqc304 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
sqc305 Pmmm 47 orthorhombic {4,3,4} 5 (3,5)
sqc308 Pmmm 47 orthorhombic {3,4,4} 5 (3,5)
sqc309 Pmmm 47 orthorhombic {4,6,8} 3 (3,5)
sqc310 Pmmm 47 orthorhombic {4,4,6,4} 4 (4,4)
sqc311 Pmmm 47 orthorhombic {4,4,6,4} 4 (4,4)
sqc312 Pmmm 47 orthorhombic {6,3} 4 (2,5)
sqc319 Pmmm 47 orthorhombic {6,3} 4 (2,5)
sqc322 Pmmm 47 orthorhombic {4,5} 4 (2,5)
sqc323 Pmmm 47 orthorhombic {4,6,4} 4 (3,5)
sqc324 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
sqc329 Pmmm 47 orthorhombic {6,14} 2 (2,5)
sqc330 Pmmm 47 orthorhombic {16,4} 2 (2,5)
sqc332 Pmmm 47 orthorhombic {4,8,4,4} 4 (4,6)
sqc333 Pmmm 47 orthorhombic {4,12} 3 (2,6)
sqc335 Pmmm 47 orthorhombic {14,3} 3 (2,6)
sqc336 Pmmm 47 orthorhombic {14,3} 3 (2,6)
sqc337 Pmmm 47 orthorhombic {3,14} 3 (2,6)
sqc338 Pmmm 47 orthorhombic {3,14} 3 (2,5)
sqc339 Pmmm 47 orthorhombic {12,4} 3 (2,6)
sqc340 Pmmm 47 orthorhombic {12,4} 3 (2,6)
sqc343 Pmmm 47 orthorhombic {5,10} 3 (2,5)
sqc344 Pmmm 47 orthorhombic {10,5} 3 (2,5)