Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1021 Pmmm 47 orthorhombic {6,7} 4 (2,7)
Full image sqc1024 Pmmm 47 orthorhombic {6,7} 4 (2,7)
Full image sqc1025 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc1026 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc1030 Pmmm 47 orthorhombic {8,5} 4 (2,7)
Full image sqc1031 Pmmm 47 orthorhombic {4,4,4,3,4} 7 (5,7)
Full image sqc1032 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1033 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1034 Pmmm 47 orthorhombic {4,4,4,8,6} 5 (5,6)
Full image sqc1035 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1036 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1037 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1038 Pmmm 47 orthorhombic {4,4,4,4,3} 7 (5,7)
Full image sqc1039 Pmmm 47 orthorhombic {4,3,4,4,4} 7 (5,7)
Full image sqc1040 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1041 Pmmm 47 orthorhombic {4,4,4,3,4} 7 (5,7)
Full image sqc1043 Pmmm 47 orthorhombic {4,4,4,4,3} 7 (5,7)
Full image sqc1044 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1045 Pmmm 47 orthorhombic {4,3,4,4,4} 7 (5,7)
Full image sqc1046 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1048 Pmmm 47 orthorhombic {4,6,4,4,4} 6 (5,6)
Full image sqc1049 Pmmm 47 orthorhombic {4,4,4,4,3} 7 (5,7)
Full image sqc1050 Pmmm 47 orthorhombic {4,6,4,4,4} 6 (5,6)
Full image sqc1051 Pmmm 47 orthorhombic {6,4,4,4,4} 6 (5,6)
Full image sqc1052 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1054 Pmmm 47 orthorhombic {4,3,4,4,4} 7 (5,7)
Full image sqc1055 Pmmm 47 orthorhombic {4,4,3,4,4} 7 (5,7)
Full image sqc1056 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1057 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,7)
Full image sqc1061 Pmmm 47 orthorhombic {7,6} 4 (2,5)
Full image sqc1064 Pmmm 47 orthorhombic {6,5} 5 (2,6)
Full image sqc1070 Pmmm 47 orthorhombic {3,5} 6 (2,5)
Full image sqc1073 Pmmm 47 orthorhombic {4,5} 6 (2,6)
Full image sqc1075 Pmmm 47 orthorhombic {4,5} 6 (2,6)
Full image sqc1076 Pmmm 47 orthorhombic {4,5} 6 (2,6)
Full image sqc1078 Pmmm 47 orthorhombic {4,4,3,4,4} 7 (5,7)
Full image sqc1079 Pmmm 47 orthorhombic {4,4,4,4,6} 6 (5,6)
Full image sqc1080 Pmmm 47 orthorhombic {3,4,4,4,4} 7 (5,6)
Full image sqc1088 Pmmm 47 orthorhombic {4,8,6,4,4} 5 (5,6)
Full image sqc1089 Pmmm 47 orthorhombic {4,4,6,8,4} 5 (5,6)
Full image sqc1090 Pmmm 47 orthorhombic {4,4,8,6,4} 5 (5,6)
Full image sqc1091 Pmmm 47 orthorhombic {4,8,6,4,4} 5 (5,6)
Full image sqc1095 Pmmm 47 orthorhombic {4,8,3,4,4} 6 (5,6)
Full image sqc1096 Pmmm 47 orthorhombic {4,8,3,4,4} 6 (5,6)
Full image sqc1104 Pmmm 47 orthorhombic {5,4} 6 (2,6)
Full image sqc1107 Pmmm 47 orthorhombic {4,4,4,6,4} 6 (5,6)
Full image sqc1109 Pmmm 47 orthorhombic {5,4} 6 (2,4)
Full image sqc1119 Pmmm 47 orthorhombic {3,4,3} 8 (3,5)
Full image sqc1122 Pmmm 47 orthorhombic {3,16} 5 (2,7)
Full image sqc1129 Pmmm 47 orthorhombic {4,12} 5 (2,7)
Full image sqc1131 Pmmm 47 orthorhombic {4,12} 5 (2,7)
Full image sqc1137 Pmmm 47 orthorhombic {9,5} 4 (2,7)
Full image sqc1146 Pmmm 47 orthorhombic {9,5} 4 (2,7)
Full image sqc1149 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc1150 Pmmm 47 orthorhombic {8,3} 6 (2,7)
Full image sqc1155 Pmmm 47 orthorhombic {5,8} 5 (2,7)
Full image sqc1163 Pmmm 47 orthorhombic {8,3} 6 (2,7)
Full image sqc1176 Pmmm 47 orthorhombic {8,3} 6 (2,7)
Full image sqc1177 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc1182 Pmmm 47 orthorhombic {8,3} 6 (2,7)
Full image sqc1183 Pmmm 47 orthorhombic {3,8} 6 (2,7)
Full image sqc1187 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1195 Pmmm 47 orthorhombic {4,4,8,4,4} 6 (5,7)
Full image sqc1201 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1202 Pmmm 47 orthorhombic {4,4,8,4,4} 6 (5,7)
Full image sqc1203 Pmmm 47 orthorhombic {4,4,4,8,4} 6 (5,7)
Full image sqc1211 Pmmm 47 orthorhombic {6,4} 5 (2,5)
Full image sqc1215 Pmmm 47 orthorhombic {3,4,3,4,4,4} 8 (6,7)
Full image sqc1216 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1217 Pmmm 47 orthorhombic {8,4,4,4,4} 6 (5,7)
Full image sqc1218 Pmmm 47 orthorhombic {4,4,4,3,3,4} 8 (6,7)
Full image sqc1220 Pmmm 47 orthorhombic {4,4,4,8,4} 6 (5,7)
Full image sqc1221 Pmmm 47 orthorhombic {4,4,4,4,4} 7 (5,7)
Full image sqc1222 Pmmm 47 orthorhombic {4,4,4,4,4} 7 (5,7)
Full image sqc1223 Pmmm 47 orthorhombic {4,4,4,4,4} 7 (5,7)
Full image sqc1227 Pmmm 47 orthorhombic {4,6} 6 (2,7)
Full image sqc1259 Pmmm 47 orthorhombic {4,4,4,4,4} 7 (5,7)
Full image sqc1262 Pmmm 47 orthorhombic {4,4,4,4,4} 7 (5,7)
Full image sqc1295 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1303 Pmmm 47 orthorhombic {7,4,3} 6 (3,4)
Full image sqc1304 Pmmm 47 orthorhombic {5,6,3} 6 (3,4)
Full image sqc1323 Pmmm 47 orthorhombic {4,6} 6 (2,5)
Full image sqc1325 Pmmm 47 orthorhombic {3,4,4,6,4,4} 7 (6,6)
Full image sqc1326 Pmmm 47 orthorhombic {6,3,4,4,4,4} 7 (6,6)
Full image sqc1327 Pmmm 47 orthorhombic {3,4,4,4,4,6} 7 (6,6)
Full image sqc1341 Pmmm 47 orthorhombic {8,4,4,4,4} 6 (5,7)
Full image sqc1342 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1343 Pmmm 47 orthorhombic {4,4,8,4,4} 6 (5,7)
Full image sqc1344 Pmmm 47 orthorhombic {4,8,4,4,4} 6 (5,7)
Full image sqc1345 Pmmm 47 orthorhombic {4,4,4,4,8} 6 (5,7)
Full image sqc1346 Pmmm 47 orthorhombic {4,4,4,8,4} 6 (5,7)
Full image sqc1353 Pmmm 47 orthorhombic {3,6,5} 6 (3,4)
Full image sqc1355 Pmmm 47 orthorhombic {5,3,3} 8 (3,4)
Full image sqc1391 Pmmm 47 orthorhombic {3,4,4,6,4,4} 7 (6,6)
Full image sqc1419 Pmmm 47 orthorhombic {3,3,5} 8 (3,4)
Full image sqc1447 Pmmm 47 orthorhombic {4,14} 5 (2,7)
Full image sqc1460 Pmmm 47 orthorhombic {9,3} 6 (2,7)
Full image sqc1461 Pmmm 47 orthorhombic {9,3} 6 (2,7)
Full image sqc1471 Pmmm 47 orthorhombic {7,4} 6 (2,7)
Full image sqc1473 Pmmm 47 orthorhombic {4,7} 6 (2,7)