Pmmm

Number47
Symmetry Classorthorhombic
ChiralN

s-nets

833 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc714 Pmmm 47 orthorhombic {3,12} 5 (2,6)
Full image sqc716 Pmmm 47 orthorhombic {3,12} 5 (2,6)
Full image sqc727 Pmmm 47 orthorhombic {4,10} 3 (2,6)
Full image sqc728 Pmmm 47 orthorhombic {6,9} 3 (2,6)
Full image sqc729 Pmmm 47 orthorhombic {9,3} 4 (2,6)
Full image sqc730 Pmmm 47 orthorhombic {9,3} 4 (2,6)
Full image sqc731 Pmmm 47 orthorhombic {10,4} 3 (2,6)
Full image sqc732 Pmmm 47 orthorhombic {3,9} 4 (2,6)
Full image sqc733 Pmmm 47 orthorhombic {8,4} 4 (2,7)
Full image sqc742 Pmmm 47 orthorhombic {10,4} 3 (2,6)
Full image sqc743 Pmmm 47 orthorhombic {9,6} 3 (2,6)
Full image sqc744 Pmmm 47 orthorhombic {9,3} 4 (2,6)
Full image sqc748 Pmmm 47 orthorhombic {4,8} 4 (2,7)
Full image sqc749 Pmmm 47 orthorhombic {5,7} 4 (2,6)
Full image sqc752 Pmmm 47 orthorhombic {4,8} 5 (2,6)
Full image sqc753 Pmmm 47 orthorhombic {4,8} 5 (2,6)
Full image sqc754 Pmmm 47 orthorhombic {4,8} 5 (2,6)
Full image sqc755 Pmmm 47 orthorhombic {4,8} 5 (2,6)
Full image sqc761 Pmmm 47 orthorhombic {7,5} 4 (2,6)
Full image sqc762 Pmmm 47 orthorhombic {7,5} 4 (2,6)
Full image sqc766 Pmmm 47 orthorhombic {5,7} 4 (2,6)
Full image sqc769 Pmmm 47 orthorhombic {4,4,8,8} 4 (4,6)
Full image sqc770 Pmmm 47 orthorhombic {8,8,4,4} 4 (4,6)
Full image sqc771 Pmmm 47 orthorhombic {8,8,4,4} 4 (4,6)
Full image sqc773 Pmmm 47 orthorhombic {8,4} 4 (2,7)
Full image sqc777 Pmmm 47 orthorhombic {4,4,8,4} 5 (4,6)
Full image sqc781 Pmmm 47 orthorhombic {7,5} 4 (2,6)
Full image sqc782 Pmmm 47 orthorhombic {7,5} 4 (2,6)
Full image sqc790 Pmmm 47 orthorhombic {4,4,4,8} 5 (4,6)
Full image sqc791 Pmmm 47 orthorhombic {4,4,8,4} 5 (4,6)
Full image sqc801 Pmmm 47 orthorhombic {3,6} 6 (2,6)
Full image sqc802 Pmmm 47 orthorhombic {3,6} 6 (2,6)
Full image sqc803 Pmmm 47 orthorhombic {3,6} 6 (2,6)
Full image sqc804 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc805 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,6)
Full image sqc806 Pmmm 47 orthorhombic {3,4,4,6,4} 6 (5,6)
Full image sqc807 Pmmm 47 orthorhombic {4,4,3,4,3} 7 (5,6)
Full image sqc808 Pmmm 47 orthorhombic {3,3,4,4,4} 7 (5,6)
Full image sqc809 Pmmm 47 orthorhombic {4,8,4,4} 5 (4,6)
Full image sqc810 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc811 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,6)
Full image sqc812 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc813 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc814 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,6)
Full image sqc815 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,6)
Full image sqc816 Pmmm 47 orthorhombic {3,4,6,4,4} 6 (5,6)
Full image sqc817 Pmmm 47 orthorhombic {3,4,3,4,4} 7 (5,6)
Full image sqc818 Pmmm 47 orthorhombic {3,4,6,4,4} 6 (5,6)
Full image sqc819 Pmmm 47 orthorhombic {3,4,4,4,6} 6 (5,6)
Full image sqc820 Pmmm 47 orthorhombic {4,4,3,3,4} 7 (5,6)
Full image sqc821 Pmmm 47 orthorhombic {3,4,3,4,4} 7 (5,6)
Full image sqc822 Pmmm 47 orthorhombic {4,4,4,3,3} 7 (5,6)
Full image sqc823 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc824 Pmmm 47 orthorhombic {4,4,4,4} 6 (4,7)
Full image sqc827 Pmmm 47 orthorhombic {3,4,4,3,4} 7 (5,6)
Full image sqc828 Pmmm 47 orthorhombic {4,4,4,3,3} 7 (5,6)
Full image sqc829 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,6)
Full image sqc830 Pmmm 47 orthorhombic {3,4,4,3,4} 7 (5,6)
Full image sqc831 Pmmm 47 orthorhombic {4,3,4,4,3} 7 (5,6)
Full image sqc832 Pmmm 47 orthorhombic {4,4,4,3,3} 7 (5,6)
Full image sqc833 Pmmm 47 orthorhombic {3,3,4,4,4} 7 (5,6)
Full image sqc835 Pmmm 47 orthorhombic {5,7} 4 (2,4)
Full image sqc838 Pmmm 47 orthorhombic {6,6} 4 (2,7)
Full image sqc839 Pmmm 47 orthorhombic {5,7} 4 (2,4)
Full image sqc844 Pmmm 47 orthorhombic {3,6,3} 6 (3,5)
Full image sqc846 Pmmm 47 orthorhombic {5,4,3} 6 (3,5)
Full image sqc855 Pmmm 47 orthorhombic {4,8,4,4} 5 (4,6)
Full image sqc858 Pmmm 47 orthorhombic {4,4,4,4} 6 (4,6)
Full image sqc881 Pmmm 47 orthorhombic {4,4,6,6,4} 5 (5,5)
Full image sqc883 Pmmm 47 orthorhombic {4,8,8,4} 4 (4,6)
Full image sqc901 Pmmm 47 orthorhombic {3,6} 6 (2,6)
Full image sqc919 Pmmm 47 orthorhombic {3,4,4,6,4} 6 (5,6)
Full image sqc920 Pmmm 47 orthorhombic {6,4,4,3,4} 6 (5,6)
Full image sqc926 Pmmm 47 orthorhombic {4,4,8,4} 5 (4,6)
Full image sqc927 Pmmm 47 orthorhombic {4,4,8,4} 5 (4,6)
Full image sqc979 Pmmm 47 orthorhombic {14,3} 5 (2,6)
Full image sqc980 Pmmm 47 orthorhombic {4,10} 5 (2,6)
Full image sqc981 Pmmm 47 orthorhombic {14,3} 5 (2,7)
Full image sqc982 Pmmm 47 orthorhombic {10,4} 5 (2,6)
Full image sqc983 Pmmm 47 orthorhombic {10,4} 5 (2,6)
Full image sqc985 Pmmm 47 orthorhombic {3,14} 5 (2,7)
Full image sqc989 Pmmm 47 orthorhombic {10,4} 5 (2,7)
Full image sqc990 Pmmm 47 orthorhombic {10,3} 4 (2,7)
Full image sqc991 Pmmm 47 orthorhombic {3,10} 4 (2,7)
Full image sqc992 Pmmm 47 orthorhombic {4,9} 4 (2,7)
Full image sqc993 Pmmm 47 orthorhombic {3,10} 4 (2,7)
Full image sqc994 Pmmm 47 orthorhombic {10,3} 4 (2,7)
Full image sqc995 Pmmm 47 orthorhombic {4,9} 4 (2,7)
Full image sqc997 Pmmm 47 orthorhombic {10,3} 4 (2,7)
Full image sqc1000 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc1002 Pmmm 47 orthorhombic {8,5} 4 (2,7)
Full image sqc1003 Pmmm 47 orthorhombic {7,6} 4 (2,7)
Full image sqc1004 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc1006 Pmmm 47 orthorhombic {8,4,4,4,6} 5 (5,6)
Full image sqc1007 Pmmm 47 orthorhombic {8,4,4,4,6} 5 (5,6)
Full image sqc1008 Pmmm 47 orthorhombic {4,6,8,4,4} 5 (5,6)
Full image sqc1011 Pmmm 47 orthorhombic {5,8} 4 (2,7)
Full image sqc1014 Pmmm 47 orthorhombic {7,3} 6 (2,6)
Full image sqc1015 Pmmm 47 orthorhombic {5,8} 4 (2,5)
Full image sqc1019 Pmmm 47 orthorhombic {8,5} 4 (2,5)